国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

tensorflow 1.0用CNN進行圖像分類

2020-02-22 23:40:18
字體:
來源:轉載
供稿:網友

tensorflow升級到1.0之后,增加了一些高級模塊: 如tf.layers, tf.metrics, 和tf.losses,使得代碼稍微有些簡化。

任務:花卉分類

版本:tensorflow 1.0

數據:flower-photos

花總共有五類,分別放在5個文件夾下。

閑話不多說,直接上代碼,希望大家能看懂:)

復制代碼

# -*- coding: utf-8 -*-from skimage import io,transformimport globimport osimport tensorflow as tfimport numpy as npimport timepath='e:/flower/'#將所有的圖片resize成100*100w=100h=100c=3#讀取圖片def read_img(path): cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)] imgs=[] labels=[] for idx,folder in enumerate(cate):  for im in glob.glob(folder+'/*.jpg'):   print('reading the images:%s'%(im))   img=io.imread(im)   img=transform.resize(img,(w,h))   imgs.append(img)   labels.append(idx) return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)data,label=read_img(path)#打亂順序num_example=data.shape[0]arr=np.arange(num_example)np.random.shuffle(arr)data=data[arr]label=label[arr]#將所有數據分為訓練集和驗證集ratio=0.8s=np.int(num_example*ratio)x_train=data[:s]y_train=label[:s]x_val=data[s:]y_val=label[s:]#-----------------構建網絡----------------------#占位符x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')y_=tf.placeholder(tf.int32,shape=[None,],name='y_')#第一個卷積層(100——>50)conv1=tf.layers.conv2d(  inputs=x,  filters=32,  kernel_size=[5, 5],  padding="same",  activation=tf.nn.relu,  kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)#第二個卷積層(50->25)conv2=tf.layers.conv2d(  inputs=pool1,  filters=64,  kernel_size=[5, 5],  padding="same",  activation=tf.nn.relu,  kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)#第三個卷積層(25->12)conv3=tf.layers.conv2d(  inputs=pool2,  filters=128,  kernel_size=[3, 3],  padding="same",  activation=tf.nn.relu,  kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool3=tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], strides=2)#第四個卷積層(12->6)conv4=tf.layers.conv2d(  inputs=pool3,  filters=128,  kernel_size=[3, 3],  padding="same",  activation=tf.nn.relu,  kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))pool4=tf.layers.max_pooling2d(inputs=conv4, pool_size=[2, 2], strides=2)re1 = tf.reshape(pool4, [-1, 6 * 6 * 128])#全連接層dense1 = tf.layers.dense(inputs=re1,       units=1024,       activation=tf.nn.relu,      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),      kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))dense2= tf.layers.dense(inputs=dense1,       units=512,       activation=tf.nn.relu,      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),      kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))logits= tf.layers.dense(inputs=dense2,       units=5,       activation=None,      kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),      kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))#---------------------------網絡結束---------------------------loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))#定義一個函數,按批次取數據def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False): assert len(inputs) == len(targets) if shuffle:  indices = np.arange(len(inputs))  np.random.shuffle(indices) for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):  if shuffle:   excerpt = indices[start_idx:start_idx + batch_size]  else:   excerpt = slice(start_idx, start_idx + batch_size)  yield inputs[excerpt], targets[excerpt]#訓練和測試數據,可將n_epoch設置更大一些n_epoch=10batch_size=64sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer())for epoch in range(n_epoch): start_time = time.time()  #training train_loss, train_acc, n_batch = 0, 0, 0 for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):  _,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})  train_loss += err; train_acc += ac; n_batch += 1 print(" train loss: %f" % (train_loss/ n_batch)) print(" train acc: %f" % (train_acc/ n_batch))  #validation val_loss, val_acc, n_batch = 0, 0, 0 for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):  err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})  val_loss += err; val_acc += ac; n_batch += 1 print(" validation loss: %f" % (val_loss/ n_batch)) print(" validation acc: %f" % (val_acc/ n_batch))sess.close()            
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 浦江县| 托克托县| 资源县| 葵青区| 科技| 三河市| 乌什县| 临清市| 蕉岭县| 资中县| 维西| 阜平县| 灵台县| 和顺县| 平顶山市| 新丰县| 江达县| 吉林市| 晋中市| 浦北县| 河间市| 永修县| 浪卡子县| 万州区| 宁城县| 武平县| 丰顺县| 天峨县| 东兴市| 河南省| 阳信县| 晋中市| 汶川县| 高青县| 望奎县| 离岛区| 嘉义市| 元氏县| 和林格尔县| 娱乐| 修水县|