本文實例為大家分享了Python實現神經網絡算法及應用的具體代碼,供大家參考,具體內容如下
首先用Python實現簡單地神經網絡算法:
import numpy as np# 定義tanh函數def tanh(x): return np.tanh(x)# tanh函數的導數def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x)# sigmoid函數def logistic(x): return 1 / (1 + np.exp(-x))# sigmoid函數的導數def logistic_derivative(x): return logistic(x) * (1 - logistic(x))class NeuralNetwork: def __init__(self, layers, activation='tanh'): """ 神經網絡算法構造函數 :param layers: 神經元層數 :param activation: 使用的函數(默認tanh函數) :return:none """ if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivative elif activation == 'tanh': self.activation = tanh self.activation_deriv = tan_deriv # 權重列表 self.weights = [] # 初始化權重(隨機) for i in range(1, len(layers) - 1): self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25) self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25) def fit(self, X, y, learning_rate=0.2, epochs=10000): """ 訓練神經網絡 :param X: 數據集(通常是二維) :param y: 分類標記 :param learning_rate: 學習率(默認0.2) :param epochs: 訓練次數(最大循環次數,默認10000) :return: none """ # 確保數據集是二維的 X = np.atleast_2d(X) temp = np.ones([X.shape[0], X.shape[1] + 1]) temp[:, 0: -1] = X X = temp y = np.array(y) for k in range(epochs): # 隨機抽取X的一行 i = np.random.randint(X.shape[0]) # 用隨機抽取的這一組數據對神經網絡更新 a = [X[i]] # 正向更新 for l in range(len(self.weights)): a.append(self.activation(np.dot(a[l], self.weights[l]))) error = y[i] - a[-1] deltas = [error * self.activation_deriv(a[-1])] # 反向更新 for l in range(len(a) - 2, 0, -1): deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a
使用自己定義的神經網絡算法實現一些簡單的功能:
小案例:
X: Y
0 0 0
0 1 1
新聞熱點
疑難解答