本文實例為大家分享了python實現knn算法的具體代碼,供大家參考,具體內容如下
knn算法描述
對需要分類的點依次執行以下操作:
1.計算已知類別數據集中每個點與該點之間的距離
2.按照距離遞增順序排序
3.選取與該點距離最近的k個點
4.確定前k個點所在類別出現的頻率
5.返回前k個點出現頻率最高的類別作為該點的預測分類
knn算法實現
數據處理
#從文件中讀取數據,返回的數據和分類均為二維數組def loadDataSet(filename): dataSet = [] labels = [] fr = open(filename) for line in fr.readlines(): lineArr = line.strip().split(",") dataSet.append([float(lineArr[0]),float(lineArr[1])]) labels.append([float(lineArr[2])]) return dataSet , labelsknn算法
#計算兩個向量之間的歐氏距離def calDist(X1 , X2): sum = 0 for x1 , x2 in zip(X1 , X2): sum += (x1 - x2) ** 2 return sum ** 0.5def knn(data , dataSet , labels , k): n = shape(dataSet)[0] for i in range(n): dist = calDist(data , dataSet[i]) #只記錄兩點之間的距離和已知點的類別 labels[i].append(dist) #按照距離遞增排序 labels.sort(key=lambda x:x[1]) count = {} #統計每個類別出現的頻率 for i in range(k): key = labels[i][0] if count.has_key(key): count[key] += 1 else : count[key] = 1 #按頻率遞減排序 sortCount = sorted(count.items(),key=lambda item:item[1],reverse=True) return sortCount[0][0]#返回頻率最高的key,即label結果測試
已知類別數據(來源于西瓜書+虛構)
0.697,0.460,1
0.774,0.376,1
0.720,0.330,1
0.634,0.264,1
0.608,0.318,1
0.556,0.215,1
0.403,0.237,1
0.481,0.149,1
0.437,0.211,1
0.525,0.186,1
0.666,0.091,0
0.639,0.161,0
0.657,0.198,0
0.593,0.042,0
0.719,0.103,0
0.671,0.196,0
0.703,0.121,0
0.614,0.116,0
繪圖方法
def drawPoints(data , dataSet, labels): xcord1 = []; ycord1 = []; xcord2 = []; ycord2 = []; for i in range(shape(dataSet)[0]): if labels[i][0] == 0: xcord1.append(dataSet[i][0]) ycord1.append(dataSet[i][1]) if labels[i][0] == 1: xcord2.append(dataSet[i][0]) ycord2.append(dataSet[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='blue', marker='s',label=0) ax.scatter(xcord2, ycord2, s=30, c='green',label=1) ax.scatter(data[0], data[1], s=30, c='red',label="testdata") plt.legend(loc='upper right') plt.show()
測試代碼
dataSet , labels = loadDataSet('dataSet.txt')data = [0.6767,0.2122]drawPoints(data , dataSet, labels)newlabels = knn(data, dataSet , labels , 5)print newlabels運行結果
新聞熱點
疑難解答