一、爬山法簡介
爬山法(climbing method)是一種優化算法,其一般從一個隨機的解開始,然后逐步找到一個最優解(局部最優)。 假定所求問題有多個參數,我們在通過爬山法逐步獲得最優解的過程中可以依次分別將某個參數的值增加或者減少一個單位。例如某個問題的解需要使用3個整數類型的參數x1、x2、x3,開始時將這三個參數設值為(2,2,-2),將x1增加/減少1,得到兩個解(1,2,-2), (3, 2,-2);將x2增加/減少1,得到兩個解(2,3, -2),(2,1, -2);將x3增加/減少1,得到兩個解(2,2,-1),(2,2,-3),這樣就得到了一個解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
從上面的解集中找到最優解,然后將這個最優解依據上面的方法再構造一個解集,再求最優解,就這樣,直到前一次的最優解和后一次的最優解相同才結束“爬山”。
二、Python實例
設方程 y = x1+x2-x3,x1是區間[-2, 5]中的整數,x2是區間[2, 6]中的整數,x3是區間[-5, 2]中的整數。使用爬山法,找到使得y取值最小的解。
代碼如下:
代碼如下:
import random
def evaluate(x1, x2, x3):
return x1+x2-x3
if __name__ == '__main__':
x_range = [ [-2, 5], [2, 6], [-5, 2] ]
best_sol = [random.randint(x_range[0][0], x_range[0][1]),
random.randint(x_range[1][0], x_range[1][1]),
random.randint(x_range[2][0], x_range[2][1])]
while True:
best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
current_best_value = best_evaluate
sols = [best_sol]
for i in xrange(len(best_sol)):
if best_sol[i] > x_range[i][0]:
sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
if best_sol[i] < x_range[i][1]:
sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
print sols
for s in sols:
el = evaluate(s[0], s[1], s[2])
if el < best_evaluate:
best_sol = s
best_evaluate = el
新聞熱點
疑難解答