本文實(shí)例講述了python計(jì)算牛頓迭代多項(xiàng)式的方法。分享給大家供大家參考。具體實(shí)現(xiàn)方法如下:
''' p = evalPoly(a,xData,x). Evaluates Newton's polynomial p at x. The coefficient vector 'a' can be computed by the function 'coeffts'. a = coeffts(xData,yData). Computes the coefficients of Newton's polynomial.''' def evalPoly(a,xData,x): n = len(xData) - 1 # Degree of polynomial p = a[n] for k in range(1,n+1): p = a[n-k] + (x -xData[n-k])*p return pdef coeffts(xData,yData): m = len(xData) # Number of data points a = yData.copy() for k in range(1,m): a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1]) return a
希望本文所述對(duì)大家的Python程序設(shè)計(jì)有所幫助。
新聞熱點(diǎn)
疑難解答
圖片精選