国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

Tensorflow卷積神經(jīng)網(wǎng)絡實例進階

2020-02-23 00:15:28
字體:
來源:轉載
供稿:網(wǎng)友

在Tensorflow卷積神經(jīng)網(wǎng)絡實例這篇博客中,我們實現(xiàn)了一個簡單的卷積神經(jīng)網(wǎng)絡,沒有復雜的Trick。接下來,我們將使用CIFAR-10數(shù)據(jù)集進行訓練。

CIFAR-10是一個經(jīng)典的數(shù)據(jù)集,包含60000張32*32的彩色圖像,其中訓練集50000張,測試集10000張。CIFAR-10如同其名字,一共標注為10類,每一類圖片6000張。

本文實現(xiàn)了進階的卷積神經(jīng)網(wǎng)絡來解決CIFAR-10分類問題,我們使用了一些新的技巧:

    對weights進行了L2的正則化 對圖片進行了翻轉、隨機剪切等數(shù)據(jù)增強,制造了更多樣本 在每個卷積-最大池化層后面使用了LRN(局部響應歸一化層),增強了模型的泛化能力

首先需要下載Tensorflow models Tensorflow models,以便使用其中的CIFAR-10數(shù)據(jù)的類.進入目錄models/tutorials/image/cifar10目錄,執(zhí)行以下代碼

import cifar10import cifar10_inputimport tensorflow as tfimport numpy as npimport time# 定義batch_size, 訓練輪數(shù)max_steps, 以及下載CIFAR-10數(shù)據(jù)的默認路徑max_steps = 3000batch_size = 128data_dir = 'E://tmp/cifar10_data/cifar-10-batches-bin'# 定義初始化weight的函數(shù),定義的同時,對weight加一個L2 loss,放在集'losses'中def variable_with_weight_loss(shape, stddev, w1):  var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))  if w1 is not None:    weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name='weight_loss')    tf.add_to_collection('losses', weight_loss)  return var# 使用cifar10類下載數(shù)據(jù)集,并解壓、展開到其默認位置#cifar10.maybe_download_and_extract()# 在使用cifar10_input類中的distorted_inputs函數(shù)產(chǎn)生訓練需要使用的數(shù)據(jù)。需要注意的是,返回的是已經(jīng)封裝好的tensor,# 且對數(shù)據(jù)進行了Data Augmentation(水平翻轉、隨機剪切、設置隨機亮度和對比度、對數(shù)據(jù)進行標準化)images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size)# 再使用cifar10_input.inputs函數(shù)生成測試數(shù)據(jù),這里不需要進行太多處理images_test, labels_test = cifar10_input.inputs(eval_data=True,                        data_dir=data_dir,                        batch_size=batch_size)# 創(chuàng)建數(shù)據(jù)的placeholderimage_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])label_holder = tf.placeholder(tf.int32, [batch_size])# 創(chuàng)建第一個卷積層weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2,                  w1=0.0)kernel1 = tf.nn.conv2d(image_holder, weight1, strides=[1, 1, 1, 1], padding='SAME')bias1 = tf.Variable(tf.constant(0.0, shape=[64]))conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],            padding='SAME')# LRN層對ReLU會比較有用,但不適合Sigmoid這種有固定邊界并且能抑制過大值的激活函數(shù)norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)# 創(chuàng)建第二個卷積層weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2,                  w1=0.0)kernel2 = tf.nn.conv2d(norm1, weight2, strides=[1, 1, 1, 1], padding='SAME')bias2 = tf.Variable(tf.constant(0.1, shape=[64]))conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],            padding='SAME')# 使用一個全連接層reshape = tf.reshape(pool2, [batch_size, -1])dim = reshape.get_shape()[1].valueweight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, w1=0.004)bias3 = tf.Variable(tf.constant(0.1, shape=[384]))local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)# 再使用一個全連接層,隱含節(jié)點數(shù)下降了一半,只有192個,其他的超參數(shù)保持不變weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, w1=0.004)bias4 = tf.Variable(tf.constant(0.1, shape=[192]))local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)# 最后一層,將softmax放在了計算loss部分weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1 / 192.0, w1=0.0)bias5 = tf.Variable(tf.constant(0.0, shape=[10]))logits = tf.add(tf.matmul(local4, weight5), bias5)# 定義lossdef loss(logits, labels):  labels = tf.cast(labels, tf.int64)  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,                                  name='cross_entropy_per_example')  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')  tf.add_to_collection('losses', cross_entropy_mean)  return tf.add_n(tf.get_collection('losses'), name='total_loss')# 獲取最終的lossloss = loss(logits, label_holder)# 優(yōu)化器train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)# 使用tf.nn.in_top_k函數(shù)求輸出結果中top k的準確率,默認使用top 1,也就是輸出分數(shù)最高的那一類的準確率top_k_op = tf.nn.in_top_k(logits, label_holder, 1)# 使用tf.InteractiveSession創(chuàng)建默認的session,接著初始化全部模型參數(shù)sess = tf.InteractiveSession()tf.global_variables_initializer().run()# 啟動圖片數(shù)據(jù)增強線程tf.train.start_queue_runners()# 正式開始訓練for step in range(max_steps):  start_time = time.time()  image_batch, label_batch = sess.run([images_train, labels_train])  _, loss_value = sess.run([train_op, loss], feed_dict={image_holder: image_batch, label_holder: label_batch})  duration = time.time() - start_time  if step % 10 == 0:    example_per_sec = batch_size / duration    sec_per_batch = float(duration)    format_str = 'step %d, loss=%.2f ,%.1f examples/sec, %.3f sec/batch'    print(format_str % (step, loss_value, example_per_sec, sec_per_batch))num_examples = 10000import mathnum_iter = int(math.ceil(num_examples / batch_size))true_count = 0total_sample_count = num_iter * batch_sizestep = 0while step < num_iter:  image_batch, label_batch = sess.run([images_test, labels_test])  predictions = sess.run([top_k_op], feed_dict={image_holder: image_batch, label_holder: label_holder})  true_count += np.sum(predictions)  step += 1precision = true_count / total_sample_countprint('precision @ 1 = %.3f'%precision)            
發(fā)表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發(fā)表
主站蜘蛛池模板: 东源县| 日喀则市| 祁门县| 仪征市| 阜宁县| 漳州市| 濮阳县| 滦南县| 清水县| 汪清县| 兴业县| 汝城县| 丰城市| 镇赉县| 双柏县| 漳州市| 巫溪县| 磐安县| 尉犁县| 滁州市| 阳朔县| 郓城县| 天峻县| 崇阳县| 西充县| 吴旗县| 彭水| 城市| 阜康市| 大连市| 锡林浩特市| 丽水市| 西乌| 营口市| 广河县| 乳山市| 六盘水市| 梨树县| 韶关市| 特克斯县| 南通市|