想在深度學習程序運行時動態存下來一些參數。
存成Excel文件查看方便,就查了幾種方法,做個測試。因為我平常也不怎么用 Excel,簡單的存取數據就夠了。
xlwt/xlrd庫 存Excel文件:(如果存儲數據中有字符,那么寫法還有點小小的變化)
import xlwt workbook = xlwt.Workbook(encoding='utf-8') booksheet = workbook.add_sheet('Sheet 1', cell_overwrite_ok=True) #存第一行cell(1,1)和cell(1,2) booksheet.write(0,0,34) booksheet.write(0,1,38) #存第二行cell(2,1)和cell(2,2) booksheet.write(1,0,36) booksheet.write(1,1,39) #存一行數據 rowdata = [43,56] for i in range(len(rowdata)): booksheet.write(2,i,rowdata[i]) workbook.save('test_xlwt.xls') 
讀Excel文件:(同樣是對于數值類型數據)
import xlrdworkbook = xlrd.open_workbook('D://Py_exercise//test_xlwt.xls')print(workbook.sheet_names()) #查看所有sheetbooksheet = workbook.sheet_by_index(0) #用索引取第一個sheetbooksheet = workbook.sheet_by_name('Sheet 1') #或用名稱取sheet#讀單元格數據cell_11 = booksheet.cell_value(0,0)cell_21 = booksheet.cell_value(1,0)#讀一行數據row_3 = booksheet.row_values(2)print(cell_11, cell_21, row_3)>>>34.0 36.0 [43.0, 56.0]openpyxl 庫 存Excel文件:
from openpyxl import Workbook workbook = Workbook()booksheet = workbook.active #獲取當前活躍的sheet,默認是第一個sheet#存第一行單元格cell(1,1)booksheet.cell(1,1).value = 6 #這個方法索引從1開始booksheet.cell("B1").value = 7#存一行數據booksheet.append([11,87])workbook.save("test_openpyxl.xlsx")
讀Excel文件:
from openpyxl import load_workbook workbook = load_workbook('D://Py_exercise//test_openpyxl.xlsx')#booksheet = workbook.active #獲取當前活躍的sheet,默認是第一個sheetsheets = workbook.get_sheet_names() #從名稱獲取sheetbooksheet = workbook.get_sheet_by_name(sheets[0])rows = booksheet.rowscolumns = booksheet.columns#迭代所有的行for row in rows: line = [col.value for col in row]#通過坐標讀取值cell_11 = booksheet.cell('A1').valuecell_11 = booksheet.cell(row=1, column=1).value原理上其實都一樣,就寫法上有些差別。
其實如果對存儲格式沒有要求的話,我覺得存成 csv文件 也挺好的:
import pandas as pd csv_mat = np.empty((0,2),float) csv_mat = np.append(csv_mat, [[43,55]], axis=0) csv_mat = np.append(csv_mat, [[65,67]], axis=0) csv_pd = pd.DataFrame(csv_mat) csv_pd.to_csv("test_pd.csv", sep=',', header=False, index=False) 因為它讀起來非常簡單:
import pandas as pd filename = "D://Py_exercise//test_pd.csv" csv_data = pd.read_csv(filename, header=None) csv_data = np.array(csv_data, dtype=float)
新聞熱點
疑難解答