Python是數據處理常用工具,可以處理數量級從幾K至幾T不等的數據,具有較高的開發效率和可維護性,還具有較強的通用性和跨平臺性。Python可用于數據分析,但其單純依賴Python本身自帶的庫進行數據分析還是具有一定的局限性的,需要安裝第三方擴展庫來增強分析和挖掘能力。

Python數據分析需要安裝的第三方擴展庫有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Learn、Keras、Gensim、Scrapy等,以下是千鋒武漢Python培訓老師對該第三方擴展庫的簡要介紹:
1. Pandas
Pandas是Python強大、靈活的數據分析和探索工具,包含Series、DataFrame等高級數據結構和工具,安裝Pandas可使Python中處理數據非常快速和簡單。
Pandas是Python的一個數據分析包,Pandas最初被用作金融數據分析工具而開發出來,因此Pandas為時間序列分析提供了很好的支持。
Pandas是為了解決數據分析任務而創建的,Pandas納入了大量的庫和一些標準的數據模型,提供了高效的操作大型數據集所需要的工具。Pandas提供了大量是我們快速便捷的處理數據的函數和方法。Pandas包含了高級數據結構,以及讓數據分析變得快速、簡單的工具。它建立在Numpy之上,使得Numpy應用變得簡單。
帶有坐標軸的數據結構,支持自動或明確的數據對齊。這能防止由于數據結構沒有對齊,以及處理不同來源、采用不同索引的數據而產生的常見錯誤。
使用Pandas更容易處理丟失數據。
合并流行數據庫(如:基于SQL的數據庫)
Pandas是進行數據清晰/整理的最好工具。
2. Numpy
Python沒有提供數組功能,Numpy可以提供數組支持以及相應的高效處理函數,是Python數據分析的基礎,也是SciPy、Pandas等數據處理和科學計算庫最基本的函數功能庫,且其數據類型對Python數據分析十分有用。
Numpy提供了兩種基本的對象:ndarray和ufunc。ndarray是存儲單一數據類型的多維數組,而ufunc是能夠對數組進行處理的函數。Numpy的功能:
N維數組,一種快速、高效使用內存的多維數組,他提供矢量化數學運算。 可以不需要使用循環,就能對整個數組內的數據進行標準數學運算。 非常便于傳送數據到用低級語言編寫(C/C++)的外部庫,也便于外部庫以Numpy數組形式返回數據。Numpy不提供高級數據分析功能,但可以更加深刻的理解Numpy數組和面向數組的計算。
3. Matplotlib
Matplotlib是強大的數據可視化工具和作圖庫,是主要用于繪制數據圖表的Python庫,提供了繪制各類可視化圖形的命令字庫、簡單的接口,可以方便用戶輕松掌握圖形的格式,繪制各類可視化圖形。
Matplotlib是Python的一個可視化模塊,他能方便的只做線條圖、餅圖、柱狀圖以及其他專業圖形。
新聞熱點
疑難解答