通過?pandas.DataFrame.shift命令查看幫助文檔
Signature: pandas.DataFrame.shift(self, periods=1, freq=None, axis=0) Docstring: Shift index by desired number of periods with an optional time freq
該函數主要的功能就是使數據框中的數據移動,若freq=None時,根據axis的設置,行索引數據保持不變,列索引數據可以在行上上下移動或在列上左右移動;若行索引為時間序列,則可以設置freq參數,根據periods和freq參數值組合,使行索引每次發生periods*freq偏移量滾動,列索引數據不會移動
① 對于DataFrame的行索引是日期型,行索引發生移動,列索引數據不變
In [2]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=pd.date_range(start= ...: '20170101',periods=6),columns=['A','B','C','D']) ...: df ...:Out[2]: A B C D2017-01-01 0 1 2 32017-01-02 4 5 6 72017-01-03 8 9 10 112017-01-04 12 13 14 152017-01-05 16 17 18 192017-01-06 20 21 22 23In [3]: df.shift(2,axis=0,freq='2D')Out[3]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23In [4]: df.shift(2,axis=1,freq='2D')Out[4]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23In [5]: df.shift(2,freq='2D')Out[5]: A B C D2017-01-05 0 1 2 32017-01-06 4 5 6 72017-01-07 8 9 10 112017-01-08 12 13 14 152017-01-09 16 17 18 192017-01-10 20 21 22 23
結論:對于時間索引而言,shift使時間索引發生移動,其他數據保存原樣,且axis設置沒有任何影響
② 對于DataFrame行索引為非時間序列,行索引數據保持不變,列索引數據發生移動
In [6]: import pandas as pd ...: import numpy as np ...: df = pd.DataFrame(np.arange(24).reshape(6,4),index=['r1','r2','r3','r4' ...: ,'r5','r6'],columns=['A','B','C','D']) ...: df ...:Out[6]: A B C Dr1 0 1 2 3r2 4 5 6 7r3 8 9 10 11r4 12 13 14 15r5 16 17 18 19r6 20 21 22 23In [7]: df.shift(periods=2,axis=0)Out[7]: A B C Dr1 NaN NaN NaN NaNr2 NaN NaN NaN NaNr3 0.0 1.0 2.0 3.0r4 4.0 5.0 6.0 7.0r5 8.0 9.0 10.0 11.0r6 12.0 13.0 14.0 15.0In [8]: df.shift(periods=-2,axis=0)Out[8]: A B C Dr1 8.0 9.0 10.0 11.0r2 12.0 13.0 14.0 15.0r3 16.0 17.0 18.0 19.0r4 20.0 21.0 22.0 23.0r5 NaN NaN NaN NaNr6 NaN NaN NaN NaNIn [9]: df.shift(periods=2,axis=1)Out[9]: A B C Dr1 NaN NaN 0.0 1.0r2 NaN NaN 4.0 5.0r3 NaN NaN 8.0 9.0r4 NaN NaN 12.0 13.0r5 NaN NaN 16.0 17.0r6 NaN NaN 20.0 21.0In [10]: df.shift(periods=-2,axis=1)Out[10]: A B C Dr1 2.0 3.0 NaN NaNr2 6.0 7.0 NaN NaNr3 10.0 11.0 NaN NaNr4 14.0 15.0 NaN NaNr5 18.0 19.0 NaN NaNr6 22.0 23.0 NaN NaN
新聞熱點
疑難解答