目標任務:爬取騰訊社招信息,需要爬取的內容為:職位名稱,職位的詳情鏈接,職位類別,招聘人數,工作地點,發布時間。
scrapy startproject Tencent
命令執行后,會創建一個Tencent文件夾,結構如下
# -*- coding: utf-8 -*-import scrapyclass TencentItem(scrapy.Item): # 職位名 positionname = scrapy.Field() # 詳情連接 positionlink = scrapy.Field() # 職位類別 positionType = scrapy.Field() # 招聘人數 peopleNum = scrapy.Field() # 工作地點 workLocation = scrapy.Field() # 發布時間 publishTime = scrapy.Field()
三、編寫spider文件
進入Tencent目錄,使用命令創建一個基礎爬蟲類:
# tencentPostion為爬蟲名,tencent.com為爬蟲作用范圍scrapy genspider tencentPostion "tencent.com"
執行命令后會在spiders文件夾中創建一個tencentPostion.py的文件,現在開始對其編寫:
# -*- coding: utf-8 -*-import scrapyfrom tencent.items import TencentItemclass TencentpositionSpider(scrapy.Spider): """ 功能:爬取騰訊社招信息 """ # 爬蟲名 name = "tencentPosition" # 爬蟲作用范圍 allowed_domains = ["tencent.com"] url = "http://hr.tencent.com/position.php?&start=" offset = 0 # 起始url start_urls = [url + str(offset)] def parse(self, response): for each in response.xpath("http://tr[@class='even'] | //tr[@class='odd']"): # 初始化模型對象 item = TencentItem() # 職位名稱 item['positionname'] = each.xpath("./td[1]/a/text()").extract()[0] # 詳情連接 item['positionlink'] = each.xpath("./td[1]/a/@href").extract()[0] # 職位類別 item['positionType'] = each.xpath("./td[2]/text()").extract()[0] # 招聘人數 item['peopleNum'] = each.xpath("./td[3]/text()").extract()[0] # 工作地點 item['workLocation'] = each.xpath("./td[4]/text()").extract()[0] # 發布時間 item['publishTime'] = each.xpath("./td[5]/text()").extract()[0] yield item if self.offset < 1680: self.offset += 10 # 每次處理完一頁的數據之后,重新發送下一頁頁面請求 # self.offset自增10,同時拼接為新的url,并調用回調函數self.parse處理Response yield scrapy.Request(self.url + str(self.offset), callback = self.parse)四、編寫pipelines文件
# -*- coding: utf-8 -*-import jsonclass TencentPipeline(object): """ 功能:保存item數據 """ def __init__(self): self.filename = open("tencent.json", "w") def process_item(self, item, spider): text = json.dumps(dict(item), ensure_ascii = False) + ",/n" self.filename.write(text.encode("utf-8")) return item def close_spider(self, spider): self.filename.close()
新聞熱點
疑難解答