利用TensorFlow實現《神經網絡與機器學習》一書中4.7模式分類練習
具體問題是將如下圖所示雙月牙數據集分類。

使用到的工具:
python3.5 tensorflow1.2.1 numpy matplotlib
1.產生雙月環數據集
def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圓 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.uniform( r1*np.cos(theta1),r2*np.cos(theta1),num)[:, np.newaxis] X_Row1 = np.random.uniform(r1*np.sin(theta1),r2*np.sin(theta1),num)[:, np.newaxis] Y_label1 = np.ones(num) #類別標簽為1 #下半圓 theta2 = np.random.uniform(-np.pi, 0 ,num) X_Col2 = (np.random.uniform( r1*np.cos(theta2),r2*np.cos(theta2),num) + r)[:, np.newaxis] X_Row2 = (np.random.uniform(r1 * np.sin(theta2), r2 * np.sin(theta2), num) -d)[:,np.newaxis] Y_label2 = -np.ones(num) #類別標簽為-1,注意:由于采取雙曲正切函數作為激活函數,類別標簽不能為0 #合并 X_Col = np.vstack((X_Col1, X_Col2)) X_Row = np.vstack((X_Row1, X_Row2)) X = np.hstack((X_Col, X_Row)) Y_label = np.hstack((Y_label1,Y_label2)) Y_label.shape = (num*2 , 1) return X,Y_label
其中r為月環半徑,w為月環寬度,d為上下月環距離(與書中一致)
2.利用TensorFlow搭建神經網絡模型
2.1 神經網絡層添加
def add_layer(layername,inputs, in_size, out_size, activation_function=None): # add one more layer and return the output of this layer with tf.variable_scope(layername,reuse=None): Weights = tf.get_variable("weights",shape=[in_size, out_size], initializer=tf.truncated_normal_initializer(stddev=0.1)) biases = tf.get_variable("biases", shape=[1, out_size], initializer=tf.truncated_normal_initializer(stddev=0.1)) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs 2.2 利用tensorflow建立神經網絡模型
輸入層大?。?
隱藏層大小:20
輸出層大?。?
激活函數:雙曲正切函數
學習率:0.1(與書中略有不同)
(具體的搭建過程可參考莫煩的視頻,鏈接就不附上了自行搜索吧......)
###define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 2]) ys = tf.placeholder(tf.float32, [None, 1]) ###添加隱藏層 l1 = add_layer("layer1",xs, 2, 20, activation_function=tf.tanh) ###添加輸出層 prediction = add_layer("layer2",l1, 20, 1, activation_function=tf.tanh) ###MSE 均方誤差 loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1])) ###優化器選取 學習率設置 此處學習率置為0.1 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) ###tensorflow變量初始化,打開會話 init = tf.global_variables_initializer()#tensorflow更新后初始化所有變量不再用tf.initialize_all_variables() sess = tf.Session() sess.run(init)
新聞熱點
疑難解答