本文實例講述了Python編程實現的簡單神經網絡算法。分享給大家供大家參考,具體如下:
python實現二層神經網絡
包括輸入層和輸出層
# -*- coding:utf-8 -*-#! python2import numpy as np#sigmoid functiondef nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x))#input datasetx = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]])#output datasety = np.array([[0,0,1,1]]).Tnp.random.seed(1)#init weight valuesyn0 = 2*np.random.random((3,1))-1print "武林站長站測試結果:"for iter in xrange(100000): l0 = x #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer l1_error = y-l1 l1_delta = l1_error*nonlin(l1,True) syn0 += np.dot(l0.T, l1_delta)print "outout after Training:"print l1
這里,
l0:輸入層
l1:輸出層
syn0:初始權值
l1_error:誤差
l1_delta:誤差校正系數
func nonlin:sigmoid函數
這里迭代次數為100時,預測結果為

迭代次數為1000時,預測結果為:

迭代次數為10000,預測結果為:

迭代次數為100000,預測結果為:

可見迭代次數越多,預測結果越接近理想值,當時耗時也越長。
python實現三層神經網絡
包括輸入層、隱含層和輸出層
# -*- coding:utf-8 -*-#! python2import numpy as npdef nonlin(x, deriv = False): if(deriv == True): return x*(1-x) else: return 1/(1+np.exp(-x))#input datasetX = np.array([[0,0,1], [0,1,1], [1,0,1], [1,1,1]])#output datasety = np.array([[0,1,1,0]]).Tsyn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight valuesyn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight valueprint "武林站長站測試結果:"for j in range(60000): l0 = X #the first layer,and the input layer l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer l2_error = y-l2 #the hidden-output layer error if(j%10000) == 0: print "Error:"+str(np.mean(l2_error)) l2_delta = l2_error*nonlin(l2,deriv = True) l1_error = l2_delta.dot(syn1.T) #the first-hidden layer error l1_delta = l1_error*nonlin(l1,deriv = True) syn1 += l1.T.dot(l2_delta) syn0 += l0.T.dot(l1_delta)print "outout after Training:"print l2
運行結果:

更多關于Python相關內容感興趣的讀者可查看本站專題:《Python數據結構與算法教程》、《Python編碼操作技巧總結》、《Python函數使用技巧總結》、《Python字符串操作技巧匯總》及《Python入門與進階經典教程》
新聞熱點
疑難解答