這是一個(gè)判斷海洋生物數(shù)據(jù)是否是魚類而構(gòu)建的基于ID3思想的決策樹,供大家參考,具體內(nèi)容如下
# coding=utf-8import operatorfrom math import logimport timedef createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no'], [0,0,'maybe']] labels = ['no surfaceing', 'flippers'] return dataSet, labels# 計(jì)算香農(nóng)熵def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for feaVec in dataSet: currentLabel = feaVec[-1] if currentLabel not in labelCounts: labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key]) / numEntries shannonEnt -= prob * log(prob, 2) return shannonEntdef splitDataSet(dataSet, axis, value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedFeatVec = featVec[:axis] reducedFeatVec.extend(featVec[axis + 1:]) retDataSet.append(reducedFeatVec) return retDataSetdef chooseBestFeatureToSplit(dataSet): numFeatures = len(dataSet[0]) - 1 # 因?yàn)閿?shù)據(jù)集的最后一項(xiàng)是標(biāo)簽 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0 bestFeature = -1 for i in range(numFeatures): featList = [example[i] for example in dataSet] uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) prob = len(subDataSet) / float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) infoGain = baseEntropy - newEntropy if infoGain > bestInfoGain: bestInfoGain = infoGain bestFeature = i return bestFeature# 因?yàn)槲覀冞f歸構(gòu)建決策樹是根據(jù)屬性的消耗進(jìn)行計(jì)算的,所以可能會存在最后屬性用完了,但是分類# 還是沒有算完,這時(shí)候就會采用多數(shù)表決的方式計(jì)算節(jié)點(diǎn)分類def majorityCnt(classList): classCount = {} for vote in classList: if vote not in classCount.keys(): classCount[vote] = 0 classCount[vote] += 1 return max(classCount)def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): # 類別相同則停止劃分 return classList[0] if len(dataSet[0]) == 1: # 所有特征已經(jīng)用完 return majorityCnt(classList) bestFeat = chooseBestFeatureToSplit(dataSet) bestFeatLabel = labels[bestFeat] myTree = {bestFeatLabel: {}} del (labels[bestFeat]) featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # 為了不改變原始列表的內(nèi)容復(fù)制了一下 myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) return myTreedef main(): data, label = createDataSet() t1 = time.clock() myTree = createTree(data, label) t2 = time.clock() print myTree print 'execute for ', t2 - t1if __name__ == '__main__': main()
新聞熱點(diǎn)
疑難解答
圖片精選