什么是機器學習 (Machine Learning)
機器學習是研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智能的核心,是使計算機具有智能的根本途徑,其應用遍及人工智能的各個領域。
機器學習的大致分類:
1)分類(模式識別):要求系統依據已知的分類知識對輸入的未知模式(該模式的描述)作分析,以確定輸入模式的類屬,例如手寫識別(識別是不是這個數)。
2)問題求解:要求對于給定的目標狀態,尋找一個將當前狀態轉換為目標狀態的動作序列。
SVM一般是用來分類的(一般先分為兩類,再向多類推廣一生二,二生三,三生萬物哈)

問題的描述
向量表示:假設一個樣本有n個變量(特征):Ⅹ= (X1,X2,…,Xn)T
樣本表示方法:

SVM線性分類器
SVM從線性可分情況下的最優分類面發展而來。最優分類面就是要求分類線不但能將兩類正確分開(訓練錯誤率為0),且使分類間隔最大。SVM考慮尋找一個滿足分類要求的超平面,并且使訓練集中的點距離分類面盡可能的遠,也就是尋找一個分類面使它兩側的空白區域(margin)最大。
過兩類樣本中離分類面最近的點且平行于最優分類面的超平面上H1,H2的訓練樣本就叫做支持向量。
圖例:

問題描述:
假定訓練數據 :
可以被分為一個超平面:
進行歸一化:
此時分類間隔等于:
即使得:最大間隔最大等價于使
最小
下面這兩張圖可以看一下,有個感性的認識。那個好?

看下面這張圖:

下面我們要開始優化上面的式子,因為推導要用到拉格朗日定理和KKT條件,所以我們先了解一下相關知識。在求取有約束條件的優化問題時,拉格朗日乘子法(Lagrange Multiplier) 和KKT條件是非常重要的兩個求取方法,對于等式約束的優化問題,可以應用拉格朗日乘子法去求取最優值;如果含有不等式約束,可以應用KKT條件去求取。當然,這兩個方法求得的結果只是必要條件,只有當是凸函數的情況下,才能保證是充分必要條件。KKT條件是拉格朗日乘子法的泛化。之前學習的時候,只知道直接應用兩個方法,但是卻不知道為什么拉格朗日乘子法(Lagrange Multiplier) 和KKT條件能夠起作用,為什么要這樣去求取最優值呢?
新聞熱點
疑難解答