国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)完整代碼

2020-02-16 10:53:58
字體:
供稿:網(wǎng)友

出租車幾何或曼哈頓距離(Manhattan Distance)是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)詞匯 ,是種使用在幾何度量空間的幾何學用語,用以標明兩個點在標準坐標系上的絕對軸距總和。

圖中紅線代表曼哈頓距離,綠色代表歐氏距離,也就是直線距離,而藍色和黃色代表等價的曼哈頓距離。曼哈頓距離——兩點在南北方向上的距離加上在東西方向上的距離,即d(i,j)=|xi-xj|+|yi-yj|。對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到達另一點的距離正是在南北方向上旅行的距離加上在東西方向上旅行的距離,因此,曼哈頓距離又稱為出租車距離。曼哈頓距離不是距離不變量,當坐標軸變動時,點間的距離就會不同。曼哈頓距離示意圖在早期的計算機圖形學中,屏幕是由像素構(gòu)成,是整數(shù),點的坐標也一般是整數(shù),原因是浮點運算很昂貴,很慢而且有誤差,如果直接使用AB的歐氏距離(歐幾里德距離:在二維和三維空間中的歐氏距離的就是兩點之間的距離),則必須要進行浮點運算,如果使用AC和CB,則只要計算加減法即可,這就大大提高了運算速度,而且不管累計運算多少次,都不會有誤差。

Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)

#-*- coding: utf-8 -*- import codecsfrom math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0},     "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},     "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0},     "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0},     "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0},     "Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0},     "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0},     "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0}    } # Python計算曼哈頓距離 www.iplaypy.comdef manhattan(rate1,rate2):  distance = 0  commonRating = False  for key in rate1:    if key in rate2:      distance+=abs(rate1[key]-rate2[key])      commonRating=True  if commonRating:    return distance  else:    return -1 # python返回最近距離用戶def computeNearestNeighbor(username,users):  distances = []  for key in users:    if key<>username:      distance = manhattan(users[username],users[key])      distances.append((distance,key))   distances.sort()       return distances #推薦python實現(xiàn)def recommend(username,users):  #獲得最近用戶的name  nearest = computeNearestNeighbor(username,users)[0][1]  recommendations =[]  #得到最近用戶的推薦列表  neighborRatings = users[nearest]  for key in neighborRatings:    if not key in users[username]:      recommendations.append((key,neighborRatings[key]))  recommendations.sort(key=lambda rat:rat[1], reverse=True)  return recommendations    if __name__ == '__main__':  print recommend('Hailey', users)            
發(fā)表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發(fā)表
主站蜘蛛池模板: 榆中县| 新巴尔虎左旗| 榆中县| 进贤县| 舒城县| 乌兰浩特市| 米泉市| 新和县| 泰兴市| 滦南县| 沙坪坝区| 开鲁县| 长垣县| 关岭| 岢岚县| 泰来县| 新沂市| 通许县| 崇左市| 南靖县| 东源县| 九江市| 天等县| 高尔夫| 崇礼县| 瓦房店市| 丽水市| 普格县| 贡觉县| 高尔夫| 南投县| 康保县| 昭苏县| 怀仁县| 金乡县| 资源县| 安陆市| 奈曼旗| 兰溪市| 方城县| 西乌珠穆沁旗|