
這是一張靈異事件圖。。。開個玩笑,這就是一張普通的圖片。
毫無疑問,上面的那副圖畫看起來像一幅電腦背景圖片。這些都歸功于我的妹妹,她能夠將一些看上去奇怪的東西變得十分吸引眼球。然而,我們生活在數字圖片的年代,我們也很少去想這些圖片是在怎么存儲在存儲器上的或者去想這些圖片是如何通過各種變化生成的。
在這篇文章中,我將帶著你了解一些基本的圖片特征處理。data massaging 依然是一樣的:特征提取,但是這里我們還需要對跟多的密集數據進行處理,但同時數據清理是在數據庫、表、文本等中進行。這是如何對圖片進行處理的呢?我們將看到圖片是怎么存儲在硬盤中的,同時我們可以通過使用基本的操作來處理圖片。
導入圖片
在python中導入圖片是非常容易的。下面的代碼就是python如何導入代碼的:

代碼解釋:
這幅圖片有一些顏色和許多像素組成,為了形象這幅圖片是如何存儲的,把每一個像素想象成矩陣中的每一個元素。現在這些元素包含三個不同的密度信息,分別為顏色紅、綠、藍(RGB)。所以一個RGB的圖片就變成了三維的矩陣。每一個數字就是顏色的密度(RGB)
讓我們來看看一些轉化:

就像你在上面看到的一樣,我們對三個顏色維度進行了一些操作轉變。黃色不是一種直接表示的顏色,它是紅色和綠色的組合色。我們通過設置其他顏色密度值為零而得到了這些變化。
將圖像轉換為二維矩陣
處理圖像的三維色有時可能是很復雜和冗余的。如果我們壓縮圖像為二維矩陣,在特征提取后,它將變得更簡單。這是通過灰度圖像或二值化(Binarizing)圖像。當圖片顯示為不同灰色強度組合時灰度圖像比二值化(Binarizing)圖像顏色更加飽滿,而二值化(binarzing)只是簡單的構建一個充滿0和1的二維矩陣而已。
這里將叫你如何將RGB圖片轉變成灰度圖像:

就如你所見,圖片的維度已經降為了兩種灰度值了,然而圖片的特征在兩幅圖片中依然清晰可見。這就是為什么灰色圖像在硬盤上存貯更加節約空間。
現在讓我們來二值化灰色圖像,這是通過找到閥值和灰色度像素標志(flagging the pixels of Grayscale)。在這篇文章中我已經通過Otsu‘s方法來找到閥值的,Otsu‘s方法是通過最大化兩類不同像素點之間的距離來計算最優閥值的,也就是說這個閥值最小化了同類間的變量值。
新聞熱點
疑難解答