平時壓力測試,生成一些數據后分析,直接看 log 不是很直觀,前段時間看到公司同事分享了一個繪制圖表python 模塊 : plotly, 覺得很實用,利用周末時間熟悉下。

plotly
plotly 主頁 : https://plot.ly/python/
安裝
在 ubuntu 環境下,安裝 plotly 很簡單
python 版本2.7+
$ sudo pip install plotly
繪圖
在 plotly 網站注冊后,可以直接將生成的圖片保存到網站上,便于共享保存。
這里使用離線的接口,生成的 html 保存在本地文件
繪制直線圖
先隨便搞一組數據用來繪制圖表
lcd@ubuntu:~/$ cat gen_log.sh #!/bin/bashcount=$1while [ $count -gt 0 ]do sar -n DEV 1 1 | grep "Average:" | grep "eth0" | awk '{print $4,$5,$6}' count=$(($count-1))donelcd@ubuntu:~/$ sh gen_log.sh 1000 > log.txt通過上述腳本,獲取每秒鐘網卡的3個數據,記錄文本,利用 ploty 按時間繪制成直線圖,實現如下:
#!/usr/bin/env pythonimport plotly.offline as pltoffimport plotly.graph_objs as godef line_plots(name="line_plots.html"): dataset = { 'time': [], 'rx': [], 'tx': [], 'util': [] } with open("./log.txt") as f: i = 0 for line in f: items = line.split() dataset['time'].append(i) dataset['rx'].append(items[0]) dataset['tx'].append(items[1]) dataset['util'].append(items[2]) i += 1 data_g = [] # 構建 time - rx 數據關系,折線圖 tr_rx = go.Scatter( x = dataset['time'], y = dataset['rx'], name = 'rx') data_g.append(tr_rx) tr_tx = go.Scatter( x = dataset['time'], y = dataset['tx'], name = 'tx') data_g.append(tr_tx) tr_util = go.Scatter( x = dataset['time'], y = dataset['util'], name = 'util') data_g.append(tr_util) # 設置圖表布局 layout = go.Layout(title="Line plots", xaxis={'title':'time'}, yaxis={'title':'value'}) fig = go.Figure(data=data_g, layout=layout) # 生成離線html pltoff.plot(fig, filename=name)if __name__=='__main__': line_plots()生成圖表如下所示 :

line_plot
柱形圖
#!/usr/bin/env pythonimport plotly.offline as pltoffimport plotly.graph_objs as godef bar_charts(name="bar_charts.html"): dataset = {'x':['man', 'woman'], 'y1':[35, 26], 'y2':[33, 30]} data_g = [] tr_y1 = go.Bar( x = dataset['x'], y = dataset['y1'], name = '2016' ) data_g.append(tr_y1) tr_y2 = go.Bar( x = dataset['x'], y = dataset['y2'], name = '2017' ) data_g.append(tr_y2) layout = go.Layout(title="bar charts", xaxis={'title':'x'}, yaxis={'title':'value'}) fig = go.Figure(data=data_g, layout=layout) pltoff.plot(fig, filename=name)if __name__=='__main__': bar_charts()
新聞熱點
疑難解答