国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 編程 > Python > 正文

python實(shí)現(xiàn)K近鄰回歸,采用等權(quán)重和不等權(quán)重的方法

2020-02-16 00:50:55
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

如下所示:

from sklearn.datasets import load_boston boston = load_boston() from sklearn.cross_validation import train_test_split import numpy as np; X = boston.datay = boston.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 33, test_size = 0.25) print 'The max target value is: ', np.max(boston.target)print 'The min target value is: ', np.min(boston.target)print 'The average terget value is: ', np.mean(boston.target) from sklearn.preprocessing import StandardScaler ss_X = StandardScaler()ss_y = StandardScaler() X_train = ss_X.fit_transform(X_train)X_test = ss_X.transform(X_test)y_train = ss_y.fit_transform(y_train)y_test = ss_y.transform(y_test) from sklearn.neighbors import KNeighborsRegressor uni_knr = KNeighborsRegressor(weights = 'uniform')uni_knr.fit(X_train, y_train)uni_knr_y_predict = uni_knr.predict(X_test) dis_knr = KNeighborsRegressor(weights = 'distance')dis_knr.fit(X_train, y_train)dis_knr_y_predict = dis_knr.predict(X_test) from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error print 'R-squared value of uniform weights KNeighorRegressor is: ', uni_knr.score(X_test, y_test)print 'The mean squared error of uniform weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict))print 'The mean absolute error of uniform weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(uni_knr_y_predict)) print 'R-squared of distance weights KNeighorRegressor is: ', dis_knr.score(X_test, y_test)print 'the value of mean squared error of distance weights KNeighorRegressor is: ', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))print 'the value of mean ssbsolute error of distance weights KNeighorRegressor is: ', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(dis_knr_y_predict))

以上這篇python實(shí)現(xiàn)K近鄰回歸,采用等權(quán)重和不等權(quán)重的方法就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持武林站長(zhǎng)站。

發(fā)表評(píng)論 共有條評(píng)論
用戶(hù)名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 肥西县| 临泽县| 新民市| 德格县| 古浪县| 淮滨县| 石屏县| 建宁县| 闵行区| 互助| 昆明市| 焦作市| 桑日县| 通榆县| 桂阳县| 商水县| 永泰县| 巩义市| 耒阳市| 通山县| 安阳县| 增城市| 乐陵市| 磐石市| 关岭| 思茅市| 获嘉县| 勐海县| 洛宁县| 临猗县| 囊谦县| 吴堡县| 河源市| 浮梁县| 潞城市| 嘉禾县| 岳池县| 新龙县| 桐柏县| 石渠县| 读书|