国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

python dataframe向下向上填充,fillna和ffill的方法

2020-02-15 23:49:54
字體:
來源:轉載
供稿:網友

首先新建一個dataframe:

In[8]: df = pd.DataFrame({'name':list('ABCDA'),'house':[1,1,2,3,3],'date':['2010-01-01','2010-06-09','2011-12-03','2011-04-05','2012-03-23']})In[9]: dfOut[9]:    date house name0 2010-01-01  1 A1 2010-06-09  1 B2 2011-12-03  2 C3 2011-04-05  3 D4 2012-03-23  3 A

將date列改為時間類型:

In[12]: df.date = pd.to_datetime(df.date)

數據的含義是這樣的,我們有ABCD四個人的數據,已知A在2010-01-01的時候,名下有1套房,B在2010-06-09的時候,名下有1套房,C在2011-12-03的時候,有2套房,D在2011-04-05的時候有3套房,A在2012-02-23的時候,數據更新了,有兩套房。

要求在有姓名和時間的情況下,能給出其名下有幾套房:

比如A在2010-01-01與2012-03-23期間任意一天,都應該是1套房,在2012-03-23之后,都是3套房。

我們使用pandas的fillna方法,選擇ffill。

首先我們獲得一個2010-01-01到2017-12-01的dataframe

In[14]: time_range = pd.DataFrame( pd.date_range('2010-01-01','2017-12-01',freq='D'), columns=['date']).set_index("date")In[15]: time_rangeOut[15]: Empty DataFrameColumns: []Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, ...] [2892 rows x 0 columns]            
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 赤峰市| 和龙市| 鹤壁市| 道孚县| 米脂县| 永丰县| 尼木县| 淄博市| 英超| 罗山县| 县级市| 疏勒县| 修水县| 尉氏县| 巴彦淖尔市| 建昌县| 元江| 富裕县| 南漳县| 吉安市| 和林格尔县| 繁昌县| 牙克石市| 商水县| 丹江口市| 贺兰县| 泰来县| 淮安市| 会同县| 井研县| 历史| 富川| 唐山市| 瓦房店市| 满城县| 罗定市| 彰化市| 合肥市| 南川市| 柳江县| 甘洛县|