国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

使用TensorFlow實現(xiàn)SVM

2020-02-15 22:55:17
字體:
供稿:網(wǎng)友

較基礎(chǔ)的SVM,后續(xù)會加上多分類以及高斯核,供大家參考。

Talk is cheap, show me the code

import tensorflow as tffrom sklearn.base import BaseEstimator, ClassifierMixinimport numpy as npclass TFSVM(BaseEstimator, ClassifierMixin): def __init__(self,   C = 1, kernel = 'linear',   learning_rate = 0.01,   training_epoch = 1000,   display_step = 50,  batch_size = 50,  random_state = 42):  #參數(shù)列表  self.svmC = C  self.kernel = kernel  self.learning_rate = learning_rate  self.training_epoch = training_epoch  self.display_step = display_step  self.random_state = random_state  self.batch_size = batch_size def reset_seed(self):  #重置隨機數(shù)  tf.set_random_seed(self.random_state)  np.random.seed(self.random_state) def random_batch(self, X, y):  #調(diào)用隨機子集,實現(xiàn)mini-batch gradient descent  indices = np.random.randint(1, X.shape[0], self.batch_size)  X_batch = X[indices]  y_batch = y[indices]  return X_batch, y_batch def _build_graph(self, X_train, y_train):  #創(chuàng)建計算圖  self.reset_seed()  n_instances, n_inputs = X_train.shape  X = tf.placeholder(tf.float32, [None, n_inputs], name = 'X')  y = tf.placeholder(tf.float32, [None, 1], name = 'y')  with tf.name_scope('trainable_variables'):   #決策邊界的兩個變量   W = tf.Variable(tf.truncated_normal(shape = [n_inputs, 1], stddev = 0.1), name = 'weights')   b = tf.Variable(tf.truncated_normal([1]), name = 'bias')  with tf.name_scope('training'):   #算法核心   y_raw = tf.add(tf.matmul(X, W), b)   l2_norm = tf.reduce_sum(tf.square(W))   hinge_loss = tf.reduce_mean(tf.maximum(tf.zeros(self.batch_size, 1), tf.subtract(1., tf.multiply(y_raw, y))))   svm_loss = tf.add(hinge_loss, tf.multiply(self.svmC, l2_norm))   training_op = tf.train.AdamOptimizer(learning_rate = self.learning_rate).minimize(svm_loss)  with tf.name_scope('eval'):   #正確率和預(yù)測   prediction_class = tf.sign(y_raw)   correct_prediction = tf.equal(y, prediction_class)   accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  init = tf.global_variables_initializer()  self._X = X; self._y = y  self._loss = svm_loss; self._training_op = training_op  self._accuracy = accuracy; self.init = init  self._prediction_class = prediction_class  self._W = W; self._b = b def _get_model_params(self):  #獲取模型的參數(shù),以便存儲  with self._graph.as_default():   gvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)  return {gvar.op.name: value for gvar, value in zip(gvars, self._session.run(gvars))} def _restore_model_params(self, model_params):  #保存模型的參數(shù)  gvar_names = list(model_params.keys())  assign_ops = {gvar_name: self._graph.get_operation_by_name(gvar_name + '/Assign') for gvar_name in gvar_names}  init_values = {gvar_name: assign_op.inputs[1] for gvar_name, assign_op in assign_ops.items()}  feed_dict = {init_values[gvar_name]: model_params[gvar_name] for gvar_name in gvar_names}  self._session.run(assign_ops, feed_dict = feed_dict) def fit(self, X, y, X_val = None, y_val = None):  #fit函數(shù),注意要輸入驗證集  n_batches = X.shape[0] // self.batch_size  self._graph = tf.Graph()  with self._graph.as_default():   self._build_graph(X, y)  best_loss = np.infty  best_accuracy = 0  best_params = None  checks_without_progress = 0  max_checks_without_progress = 20  self._session = tf.Session(graph = self._graph)  with self._session.as_default() as sess:   self.init.run()   for epoch in range(self.training_epoch):    for batch_index in range(n_batches):     X_batch, y_batch = self.random_batch(X, y)     sess.run(self._training_op, feed_dict = {self._X:X_batch, self._y:y_batch})    loss_val, accuracy_val = sess.run([self._loss, self._accuracy], feed_dict = {self._X: X_val, self._y: y_val})    accuracy_train = self._accuracy.eval(feed_dict = {self._X: X_batch, self._y: y_batch})    if loss_val < best_loss:     best_loss = loss_val     best_params = self._get_model_params()     checks_without_progress = 0    else:     checks_without_progress += 1     if checks_without_progress > max_checks_without_progress:      break    if accuracy_val > best_accuracy:     best_accuracy = accuracy_val     #best_params = self._get_model_params()    if epoch % self.display_step == 0:     print('Epoch: {}/tValidaiton loss: {:.6f}/tValidation Accuracy: {:.4f}/tTraining Accuracy: {:.4f}'      .format(epoch, loss_val, accuracy_val, accuracy_train))   print('Best Accuracy: {:.4f}/tBest Loss: {:.6f}'.format(best_accuracy, best_loss))   if best_params:    self._restore_model_params(best_params)    self._intercept = best_params['trainable_variables/weights']    self._bias = best_params['trainable_variables/bias']   return self def predict(self, X):  with self._session.as_default() as sess:   return self._prediction_class.eval(feed_dict = {self._X: X}) def _intercept(self):  return self._intercept def _bias(self):  return self._bias            
發(fā)表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發(fā)表
主站蜘蛛池模板: 侯马市| 天祝| 绥化市| 定州市| 涿鹿县| 将乐县| 潮州市| 罗田县| 苏尼特右旗| 喀喇沁旗| 珲春市| 望都县| 长兴县| 紫阳县| 瓮安县| 昌宁县| 泰和县| 郧西县| 宜兴市| 亳州市| 辽阳市| 耿马| 富民县| 灵石县| 益阳市| 盐山县| 临泉县| 韶山市| 贵南县| 麻城市| 樟树市| 连城县| 清苑县| 新晃| 江孜县| 蓬溪县| 靖江市| 蒲江县| 平武县| 平武县| 南充市|