DataFrame對(duì)象的創(chuàng)建,修改,合并
import pandas as pdimport numpy as np
創(chuàng)建DataFrame對(duì)象
# 創(chuàng)建DataFrame對(duì)象df = pd.DataFrame([1, 2, 3, 4, 5], columns=['cols'], index=['a','b','c','d','e'])print df
colsa 1b 2c 3d 4e 5
df2 = pd.DataFrame([[1, 2, 3],[4, 5, 6]], columns=['col1','col2','col3'], index=['a','b'])print df2
col1 col2 col3a 1 2 3b 4 5 6
df3 = pd.DataFrame(np.array([[1,2],[3,4]]), columns=['col1','col2'], index=['a','b'])print df3
col1 col2a 1 2b 3 4
df4 = pd.DataFrame({'col1':[1,3],'col2':[2,4]},index=['a','b'])print df4
col1 col2a 1 2b 3 4
創(chuàng)建DataFrame對(duì)象的數(shù)據(jù)可以為列表,數(shù)組和字典,列名和索引為列表對(duì)象
基本操作
# DataFrame對(duì)象的基本操作df2.index
Index([u'a', u'b'], dtype='object')
df2.columns
Index([u'col1', u'col2', u'col3'], dtype='object')
# 根據(jù)索引查看數(shù)據(jù)df2.loc['a'] # 索引為a這一行的數(shù)據(jù)# df2.iloc[0] 跟上面的操作等價(jià),一個(gè)是根據(jù)索引名,一個(gè)是根據(jù)數(shù)字索引訪問(wèn)數(shù)據(jù)
col1 1col2 2col3 3Name: a, dtype: int64
print df2.loc[['a','b']] # 訪問(wèn)多行數(shù)據(jù),索引參數(shù)為一個(gè)列表對(duì)象
col1 col2 col3a 1 2 3b 4 5 6
print df.loc[df.index[1:3]]
colsb 2c 3
# 訪問(wèn)列數(shù)據(jù)print df2[['col1','col3']]
col1 col3a 1 3b 4 6
計(jì)算
# DataFrame元素求和# 默認(rèn)是對(duì)每列元素求和print df2.sum()
col1 5col2 7col3 9dtype: int64
# 行求和print df2.sum(1)
a 6b 15dtype: int64
# 對(duì)每個(gè)元素乘以2print df2.apply(lambda x:x*2)
col1 col2 col3a 2 4 6b 8 10 12
# 對(duì)每個(gè)元素求平方(支持ndarray一樣的向量化操作)print df2**2
col1 col2 col3a 1 4 9b 16 25 36
列擴(kuò)充# 對(duì)DataFrame對(duì)象進(jìn)行列擴(kuò)充df2['col4'] = ['cnn','rnn']print df2
col1 col2 col3 col4a 1 2 3 cnnb 4 5 6 rnn
# 也可以通過(guò)一個(gè)新的DataFrame對(duì)象來(lái)定義一個(gè)新列,索引自動(dòng)對(duì)應(yīng)df2['col5'] = pd.DataFrame(['MachineLearning','DeepLearning'],index=['a','b'])print df2
col1 col2 col3 col4 col5a 1 2 3 cnn MachineLearningb 4 5 6 rnn DeepLearning
新聞熱點(diǎn)
疑難解答
圖片精選