里氏替換原則,OCP作為OO的高層原則,主張使用“抽象(Abstraction)”和“多態(Polymorphism)”將設計中的靜態結構改為動態結構,維持設計的封閉性。“抽象”是語言提供的功能。“多態”由繼承語義實現。
里氏替換原則包含以下4層含義:
現在我們可以對以上四層含義進行講解。
子類可以實現父類的抽象方法,但是不能覆蓋父類的非抽象方法
在我們做系統設計時,經常會設計接口或抽象類,然后由子類來實現抽象方法,這里使用的其實就是里氏替換原則。子類可以實現父類的抽象方法很好理解,事實上,子類也必須完全實現父類的抽象方法,哪怕寫一個空方法,否則會編譯報錯。
里氏替換原則的關鍵點在于不能覆蓋父類的非抽象方法。父類中凡是已經實現好的方法,實際上是在設定一系列的規范和契約,雖然它不強制要求所有的子類必須遵從這些規范,但是如果子類對這些非抽象方法任意修改,就會對整個繼承體系造成破壞。而里氏替換原則就是表達了這一層含義。
在面向對象的設計思想中,繼承這一特性為系統的設計帶來了極大的便利性,但是由之而來的也潛在著一些風險。下面舉例來說明繼承的風險,我們需要完成一個兩數相減的功能,由類A來負責。
class A{ public int func1(int a, int b){ return a-b; } } public class Client{ public static void main(String[] args){ A a = new A(); System.out.println("100-50="+a.func1(100, 50)); System.out.println("100-80="+a.func1(100, 80)); } }
運行結果:
100-50=50100-80=20
后來,我們需要增加一個新的功能:完成兩數相加,然后再與100求和,由類B來負責。即類B需要完成兩個功能:
兩數相減。
兩數相加,然后再加100。
由于類A已經實現了第一個功能,所以類B繼承類A后,只需要再完成第二個功能就可以了,代碼如下:
class B extends A{ public int func1(int a, int b){ return a+b; } public int func2(int a, int b){ return func1(a,b)+100; } } public class Client{ public static void main(String[] args){ B b = new B(); System.out.println("100-50="+b.func1(100, 50)); System.out.println("100-80="+b.func1(100, 80)); System.out.println("100+20+100="+b.func2(100, 20)); } }
類B完成后,運行結果:
100-50=150100-80=180100+20+100=220
我們發現原本運行正常的相減功能發生了錯誤。原因就是類B在給方法起名時無意中重寫了父類的方法,造成所有運行相減功能的代碼全部調用了類B重寫后的方法,造成原本運行正常的功能出現了錯誤。在本例中,引用基類A完成的功能,換成子類B之后,發生了異常。在實際編程中,我們常常會通過重寫父類的方法來完成新的功能,這樣寫起來雖然簡單,但是整個繼承體系的可復用性會比較差,特別是運用多態比較頻繁時,程序運行出錯的幾率非常大。如果非要重寫父類的方法,比較通用的做法是:原來的父類和子類都繼承一個更通俗的基類,原有的繼承關系去掉,采用依賴、聚合,組合等關系代替。
新聞熱點
疑難解答