關(guān)于變量分箱主要分為兩大類:有監(jiān)督型和無(wú)監(jiān)督型
對(duì)應(yīng)的分箱方法:
A. 無(wú)監(jiān)督:(1) 等寬 (2) 等頻 (3) 聚類
B. 有監(jiān)督:(1) 卡方分箱法(ChiMerge) (2) ID3、C4.5、CART等單變量決策樹(shù)算法 (3) 信用評(píng)分建模的IV最大化分箱 等
本篇使用python,基于CART算法對(duì)連續(xù)變量進(jìn)行最優(yōu)分箱
由于CART是決策樹(shù)分類算法,所以相當(dāng)于是單變量決策樹(shù)分類。
簡(jiǎn)單介紹下理論:
CART是二叉樹(shù),每次僅進(jìn)行二元分類,對(duì)于連續(xù)性變量,方法是依次計(jì)算相鄰兩元素值的中位數(shù),將數(shù)據(jù)集一分為二,計(jì)算該點(diǎn)作為切割點(diǎn)時(shí)的基尼值較分割前的基尼值下降程度,每次切分時(shí),選擇基尼下降程度最大的點(diǎn)為最優(yōu)切分點(diǎn),再將切分后的數(shù)據(jù)集按同樣原則切分,直至終止條件為止。
關(guān)于CART分類的終止條件:視實(shí)際情況而定,我的案例設(shè)置為 a.每個(gè)葉子節(jié)點(diǎn)的樣本量>=總樣本量的5% b.內(nèi)部節(jié)點(diǎn)再劃分所需的最小樣本數(shù)>=總樣本量的10%
python代碼實(shí)現(xiàn):
import pandas as pdimport numpy as np #讀取數(shù)據(jù)集,至少包含變量和target兩列sample_set = pd.read_excel('/數(shù)據(jù)樣本.xlsx') def calc_score_median(sample_set, var): ''' 計(jì)算相鄰評(píng)分的中位數(shù),以便進(jìn)行決策樹(shù)二元切分 param sample_set: 待切分樣本 param var: 分割變量名稱 ''' var_list = list(np.unique(sample_set[var])) var_median_list = [] for i in range(len(var_list) -1): var_median = (var_list[i] + var_list[i+1]) / 2 var_median_list.append(var_median) return var_median_list
var表示需要進(jìn)行分箱的變量名,返回一個(gè)樣本變量中位數(shù)的list
def choose_best_split(sample_set, var, min_sample): ''' 使用CART分類決策樹(shù)選擇最好的樣本切分點(diǎn) 返回切分點(diǎn) param sample_set: 待切分樣本 param var: 分割變量名稱 param min_sample: 待切分樣本的最小樣本量(限制條件) ''' # 根據(jù)樣本評(píng)分計(jì)算相鄰不同分?jǐn)?shù)的中間值 score_median_list = calc_score_median(sample_set, var) median_len = len(score_median_list) sample_cnt = sample_set.shape[0] sample1_cnt = sum(sample_set['target']) sample0_cnt = sample_cnt- sample1_cnt Gini = 1 - np.square(sample1_cnt / sample_cnt) - np.square(sample0_cnt / sample_cnt) bestGini = 0.0; bestSplit_point = 0.0; bestSplit_position = 0.0 for i in range(median_len): left = sample_set[sample_set[var] < score_median_list[i]] right = sample_set[sample_set[var] > score_median_list[i]] left_cnt = left.shape[0]; right_cnt = right.shape[0] left1_cnt = sum(left['target']); right1_cnt = sum(right['target']) left0_cnt = left_cnt - left1_cnt; right0_cnt = right_cnt - right1_cnt left_ratio = left_cnt / sample_cnt; right_ratio = right_cnt / sample_cnt if left_cnt < min_sample or right_cnt < min_sample: continue Gini_left = 1 - np.square(left1_cnt / left_cnt) - np.square(left0_cnt / left_cnt) Gini_right = 1 - np.square(right1_cnt / right_cnt) - np.square(right0_cnt / right_cnt) Gini_temp = Gini - (left_ratio * Gini_left + right_ratio * Gini_right) if Gini_temp > bestGini: bestGini = Gini_temp; bestSplit_point = score_median_list[i] if median_len > 1: bestSplit_position = i / (median_len - 1) else: bestSplit_position = i / median_len else: continue Gini = Gini - bestGini return bestSplit_point, bestSplit_position
新聞熱點(diǎn)
疑難解答
圖片精選