国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 數(shù)據(jù)庫 > 文庫 > 正文

聚簇索引與非聚簇索引

2024-09-07 22:12:20
字體:
來源:轉載
供稿:網(wǎng)友

不論是 聚集索引,還是非聚集索引,都是用B+樹來實現(xiàn)的。我們在了解這兩種索引之前,需要先了解B+樹。

BTree,B-Tree,B+Tree,B*Tree都是什么

B+ 樹的結構圖:

B+樹的結構圖

B+ 樹的特點:

(1)所有關鍵字都出現(xiàn)在葉子結點的鏈表中(稠密索引),且鏈表中的關鍵字恰好是有序的;

(2)不可能在非葉子結點命中;

(3)非葉子結點相當于是葉子結點的索引(稀疏索引),葉子結點相當于是存儲(關鍵字)數(shù)據(jù)的數(shù)據(jù)層;

B+ 樹中增加一個數(shù)據(jù),或者刪除一個數(shù)據(jù),需要分多種情況處理,比較復雜,這里就不詳述這個內容了。

聚集索引(Clustered Index)

聚集索引的葉節(jié)點就是實際的數(shù)據(jù)頁;在數(shù)據(jù)頁中數(shù)據(jù)按照索引順序存儲;行的物理位置和行在索引中的位置是相同的;每個表只能有一個聚集索引;聚集索引的平均大小大約為表大小的5%左右。

下面是兩副簡單描述聚集索引的示意圖:

在聚集索引中執(zhí)行下面語句的的過程:select * from table where firstName = 'Ota'

聚集索引示意圖

一個比較抽象點的聚集索引圖示:

align="center"聚集索引圖

非聚集索引 (Unclustered Index)
  非聚集索引的頁,不是數(shù)據(jù),而是指向數(shù)據(jù)頁的頁。
  若未指定索引類型,則默認為非聚集索引
  葉節(jié)點頁的次序和表的物理存儲次序不同
  每個表最多可以有249個非聚集索引
  在非聚集索引創(chuàng)建之前創(chuàng)建聚集索引(否則會引發(fā)索引重建)
  在非聚集索引中執(zhí)行下面語句的的過程:  

select * from employee where lname = 'Green'

非聚集索引

一個比較抽象點的非聚集索引圖示:

非聚集索引示意圖

什么是 Bookmark Lookup
  雖然SQL 2005 中已經(jīng)不在提 Bookmark Lookup 了(換湯不換藥),但是我們的很多搜索都是用的這樣的搜索過程,如下:

  先在非聚集中找,然后再在聚集索引中找。
 

BookMark Lookup

這里舉一個例子,給我們演示 Bookmark Lookup 比 Table Scan 慢的情況,例子的腳本如下:

  USE CREDIT
  go
  -- These samples use the Credit database. You can download and restore the
  -- credit database from here:
  -- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip
  -- NOTE: This is a SQL Server 2000 backup and MANY examples will work on
  -- SQL Server 2000 in addition to SQL Server 2005.
  -------------------------------------------------------------------------------
  -- (1) Create two tables which are copies of charge:
  -------------------------------------------------------------------------------
  -- Create the HEAP
  SELECT * INTO ChargeHeap FROM Charge
  go
  -- Create the CL Table
  SELECT * INTO ChargeCL FROM Charge
  go
  CREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)
  go
  -------------------------------------------------------------------------------
  -- (2) Add the same non-clustered indexes to BOTH of these tables:
  -------------------------------------------------------------------------------
  -- Create the NC index on the HEAP
  CREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)
  go
  -- Create the NC index on the CL Table
  CREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)
  go
  -------------------------------------------------------------------------------
  -- (3) Begin to query these tables and see what kind of access and I/O returns
  -------------------------------------------------------------------------------
  -- Get ready for a bit of analysis:
  SET STATISTICS IO ON
  -- Turn Graphical Showplan ON (Ctrl+K)
  -- First, a point query (also, see how a bookmark lookup looks in 2005)
  SELECT * FROM ChargeHeap WHERE Charge_no = 12345
  go
  SELECT * FROM ChargeCL WHERE Charge_no = 12345
  go
  -- What if our query is less selective?
  -- 1000 is .0625% of our data... (1,600,000 million rows)
  SELECT * FROM ChargeHeap WHERE Charge_no < 1000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 1000
  go
  -- What if our query is less selective?
  -- 16000 is 1% of our data... (1,600,000 million rows)
  SELECT * FROM ChargeHeap WHERE Charge_no < 16000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 16000
  go
  -------------------------------------------------------------------------------
  -- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?
  -------------------------------------------------------------------------------
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 4000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 4000
  go
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 3000
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3000
  go
  -- And - you can narrow it down by trying the middle ground:
  -- What happens here: Table Scan or Bookmark lookup?
  SELECT * FROM ChargeHeap WHERE Charge_no < 3500
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3500
  go
  -- And again:
  SELECT * FROM ChargeHeap WHERE Charge_no < 3250
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3250
  go
  -- And again:
  SELECT * FROM ChargeHeap WHERE Charge_no < 3375
  go
  SELECT * FROM ChargeCL WHERE Charge_no < 3375
  go
  -- Don't worry, I won't make you go through it all :)
  -- For the Heap Table (in THIS case), the cutoff is: 0.21%
  SELECT * FROM ChargeHeap WHERE Charge_no < 3383
  go
  SELECT * FROM ChargeHeap WHERE Charge_no < 3384
  go
  -- For the Clustered Table (in THIS case), the cut-off is: 0.21%
  SELECT * FROM ChargeCL WHERE Charge_no < 3438
  SELECT * FROM ChargeCL WHERE Charge_no < 3439
  go

這個例子也就是 吳家震 在Teched 2007 上的那個演示例子。

發(fā)表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發(fā)表
主站蜘蛛池模板: 互助| 贵港市| 武威市| 大新县| 襄城县| 临泉县| 平塘县| 梁河县| 共和县| 碌曲县| 金昌市| 红河县| 南部县| 渑池县| 寿光市| 夏河县| 岫岩| 那曲县| 南宁市| 福泉市| 顺昌县| 曲阳县| 荆州市| 西城区| 琼海市| 美姑县| 辽阳县| 龙口市| 石门县| 泌阳县| 喜德县| 固始县| 漳浦县| 阿尔山市| 涪陵区| 石台县| 无棣县| 定边县| 霸州市| 新乡县| 灵川县|