這篇文章主要介紹了MySQL中分頁優(yōu)化的實例詳解,分頁優(yōu)化是MySQL優(yōu)化當中的重點,需要的朋友可以參考下
通常,我們會采用ORDER BY LIMIT start, offset 的方式來進行分頁查詢。例如下面這個SQL:
- SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;
或者像下面這個不帶任何條件的分頁SQL:
- SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;
一般而言,分頁SQL的耗時隨著 start 值的增加而急劇增加,我們來看下面這2個不同起始值的分頁SQL執(zhí)行耗時:
- yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;
- …
- 10 rows in set (0.05 sec)
- yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;
- …
- 10 rows in set (2.39 sec)
可以看到,隨著分頁數(shù)量的增加,SQL查詢耗時也有數(shù)十倍增加,顯然不科學。今天我們就來分析下,如何能優(yōu)化這個分頁方案。 一般滴,想要優(yōu)化分頁的終極方案就是:沒有分頁,哈哈哈~~~,不要說我講廢話,確實如此,可以把分頁算法交給Sphinx、Lucence等第三方解決方案,沒必要讓MySQL來做它不擅長的事情。 當然了,有小伙伴說,用第三方太麻煩了,我們就想用MySQL來做這個分頁,咋辦呢?莫急,且待我們慢慢分析,先看下表DDL、數(shù)據(jù)量、查詢SQL的執(zhí)行計劃等信息:
- yejr@imysql.com> SHOW CREATE TABLE `t1`;
- CREATE TABLE `t1` (
- `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
- ...
- `ftype` tinyint(3) unsigned NOT NULL,
- ...
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
- yejr@imysql.com> select count(*) from t1;
- +----------+
- | count(*) |
- +----------+
- | 994584 |
- +----------+
- yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10/G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 510
- Extra: Using where
- yejr@imysql.com> EXPLAIN SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500, 10/G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 935510
- Extra: Using where
可以看到,雖然通過主鍵索引進行掃描了,但第二個SQL需要掃描的記錄數(shù)太大了,而且需要先掃描約935510條記錄,然后再根據(jù)排序結果取10條記錄,這肯定是非常慢了。 針對這種情況,我們的優(yōu)化思路就比較清晰了,有兩點:
1、盡可能從索引中直接獲取數(shù)據(jù),避免或減少直接掃描行數(shù)據(jù)的頻率
2、盡可能減少掃描的記錄數(shù),也就是先確定起始的范圍,再往后取N條記錄即可
據(jù)此,我們有兩種相應的改寫方法:子查詢、表連接,即下面這樣的:
#采用子查詢的方式優(yōu)化,在子查詢里先從索引獲取到最大id,然后倒序排,再取10行結果集
#注意這里采用了2次倒序排,因此在取LIMIT的start值時,比原來的值加了10,即935510,否則結果將和原來的不一致
- yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC/G
- *************************** 1. row ***************************
- id: 1
- select_type: PRIMARY
- table: <derived2>
- type: ALL
- possible_keys: NULL
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 10
- Extra: Using filesort
- *************************** 2. row ***************************
- id: 2
- select_type: DERIVED
- table: t1
- type: ALL
- possible_keys: PRIMARY
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 973192
- Extra: Using where
- *************************** 3. row ***************************
- id: 3
- select_type: SUBQUERY
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 935511
- Extra: Using where
- #采用INNER JOIN優(yōu)化,JOIN子句里也優(yōu)先從索引獲取ID列表,然后直接關聯(lián)查詢獲得最終結果,這里不需要加10
- yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id)/G
- *************************** 1. row ***************************
- id: 1
- select_type: PRIMARY
- table: <derived2>
- type: ALL
- possible_keys: NULL
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 935510
- Extra: NULL
- *************************** 2. row ***************************
- id: 1
- select_type: PRIMARY
- table: t1
- type: eq_ref
- possible_keys: PRIMARY
- key: PRIMARY
- key_len: 4
- ref: t2.id
- rows: 1
- Extra: NULL
- *************************** 3. row ***************************
- id: 2
- select_type: DERIVED
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 973192
- Extra: Using where
然后我們來對比下這2個優(yōu)化后的新SQL執(zhí)行時間:
- yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) T ORDER BY id DESC;
- ...
- rows in set (1.86 sec)
- #采用子查詢優(yōu)化,從profiling的結果來看,相比原來的那個SQL快了:28.2%
- yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
- ...
- 10 rows in set (1.83 sec)
- #采用INNER JOIN優(yōu)化,從profiling的結果來看,相比原來的那個SQL快了:30.8%
我們再來看一個不帶過濾條件的分頁SQL對比:
- #原始SQL
- yejr@imysql.com> EXPLAIN SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10/G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 935510
- Extra: NULL
- yejr@imysql.com> SELECT * FROM `t1` ORDER BY id DESC LIMIT 935500, 10;
- ...
- 10 rows in set (2.22 sec)
- #采用子查詢優(yōu)化
- yejr@imysql.com> EXPLAIN SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
- *************************** 1. row ***************************
- id: 1
- select_type: PRIMARY
- table: <derived2>
- type: ALL
- possible_keys: NULL
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 10
- Extra: Using filesort
- *************************** 2. row ***************************
- id: 2
- select_type: DERIVED
- table: t1
- type: ALL
- possible_keys: PRIMARY
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 973192
- Extra: Using where
- *************************** 3. row ***************************
- id: 3
- select_type: SUBQUERY
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 935511
- Extra: Using index
- yejr@imysql.com> SELECT * FROM (SELECT * FROM `t1` WHERE id > ( SELECT id FROM `t1` ORDER BY id DESC LIMIT 935510, 1) LIMIT 10) t ORDER BY id DESC;
- …
- 10 rows in set (2.01 sec)
- #采用子查詢優(yōu)化,從profiling的結果來看,相比原來的那個SQL快了:10.6%
- #采用INNER JOIN優(yōu)化
- yejr@imysql.com> EXPLAIN SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id)/G
- *************************** 1. row ***************************
- id: 1
- select_type: PRIMARY
- table:
- type: ALL
- possible_keys: NULL
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 935510
- Extra: NULL
- *************************** 2. row ***************************
- id: 1
- select_type: PRIMARY
- table: t1
- type: eq_ref
- possible_keys: PRIMARY
- key: PRIMARY
- key_len: 4
- ref: t1.id
- rows: 1
- Extra: NULL
- *************************** 3. row ***************************
- id: 2
- select_type: DERIVED
- table: t1
- type: index
- possible_keys: NULL
- key: PRIMARY
- key_len: 4
- ref: NULL
- rows: 973192
- Extra: Using index
- yejr@imysql.com> SELECT * FROM `t1` INNER JOIN ( SELECT id FROM `t1`ORDER BY id DESC LIMIT 935500,10) t2 USING (id);
- …
- 10 rows in set (1.70 sec)
- #采用INNER JOIN優(yōu)化,從profiling的結果來看,相比原來的那個SQL快了:30.2%
至此,我們看到采用子查詢或者INNER JOIN進行優(yōu)化后,都有大幅度的提升,這個方法也同樣適用于較小的分頁,雖然LIMIT開始的 start 位置小了很多,SQL執(zhí)行時間也快了很多,但采用這種方法后,帶WHERE條件的分頁分別能提高查詢效率:24.9%、156.5%,不帶WHERE條件的分頁分別提高查詢效率:554.5%、11.7%,各位可以自行進行測試驗證。單從提升比例說,還是挺可觀的,確保這些優(yōu)化方法可以適用于各種分頁模式,就可以從一開始就是用。 我們來看下各種場景相應的提升比例是多少:
結論:這樣看就和明顯了,尤其是針對大分頁的情況,因此我們優(yōu)先推薦使用INNER JOIN方式優(yōu)化分頁算法。
上述每次測試都重啟mysqld實例,并且加了SQL_NO_CACHE,以保證每次都是直接數(shù)據(jù)文件或索引文件中讀取。如果數(shù)據(jù)經(jīng)過預熱后,查詢效率會一定程度提升,但但上述相應的效率提升比例還是基本一致的。
新聞熱點
疑難解答
圖片精選