一、簡單配置,獲取單個網頁上的內容。
(1)創建scrapy項目
scrapy startproject getblog
(2)編輯 items.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items## See documentation in:# http://doc.scrapy.org/en/latest/topics/items.html from scrapy.item import Item, Field class BlogItem(Item): desc = Field()
(3)在 spiders 文件夾下,創建 blog_spider.py
需要熟悉下xpath選擇,感覺跟JQuery選擇器差不多,但是不如JQuery選擇器用著舒服( w3school教程: http://www.w3school.com.cn/xpath/ )。
# coding=utf-8 from scrapy.spider import Spiderfrom getblog.items import BlogItemfrom scrapy.selector import Selector class BlogSpider(Spider): # 標識名稱 name = 'blog' # 起始地址 start_urls = ['http://www.cnblogs.com/'] def parse(self, response): sel = Selector(response) # Xptah 選擇器 # 選擇所有含有class屬性,值為‘post_item'的div 標簽內容 # 下面的 第2個div 的 所有內容 sites = sel.xpath('//div[@class="post_item"]/div[2]') items = [] for site in sites: item = BlogItem() # 選取h3標簽下,a標簽下,的文字內容 ‘text()' item['title'] = site.xpath('h3/a/text()').extract() # 同上,p標簽下的 文字內容 ‘text()' item['desc'] = site.xpath('p[@class="post_item_summary"]/text()').extract() items.append(item) return items
(4)運行,
scrapy crawl blog # 即可
(5)輸出文件。
在 settings.py 中進行輸出配置。
# 輸出文件位置FEED_URI = 'blog.xml'# 輸出文件格式 可以為 json,xml,csvFEED_FORMAT = 'xml'
輸出位置為項目根文件夾下。
二、基本的 -- scrapy.spider.Spider
(1)使用交互shell
dizzy@dizzy-pc:~$ scrapy shell "http://www.baidu.com/"
2014-08-21 04:09:11+0800 [scrapy] INFO: Scrapy 0.24.4 started (bot: scrapybot)2014-08-21 04:09:11+0800 [scrapy] INFO: Optional features available: ssl, http11, django2014-08-21 04:09:11+0800 [scrapy] INFO: Overridden settings: {'LOGSTATS_INTERVAL': 0}2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled extensions: TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, MetaRefreshMiddleware, HttpCompressionMiddleware, RedirectMiddleware, CookiesMiddleware, ChunkedTransferMiddleware, DownloaderStats2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware2014-08-21 04:09:11+0800 [scrapy] INFO: Enabled item pipelines: 2014-08-21 04:09:11+0800 [scrapy] DEBUG: Telnet console listening on 127.0.0.1:60242014-08-21 04:09:11+0800 [scrapy] DEBUG: Web service listening on 127.0.0.1:60812014-08-21 04:09:11+0800 [default] INFO: Spider opened2014-08-21 04:09:12+0800 [default] DEBUG: Crawled (200) <GET http://www.baidu.com/> (referer: None)[s] Available Scrapy objects:[s] crawler <scrapy.crawler.Crawler object at 0xa483cec>[s] item {}[s] request <GET http://www.baidu.com/>[s] response <200 http://www.baidu.com/>[s] settings <scrapy.settings.Settings object at 0xa0de78c>[s] spider <Spider 'default' at 0xa78086c>[s] Useful shortcuts:[s] shelp() Shell help (print this help)[s] fetch(req_or_url) Fetch request (or URL) and update local objects[s] view(response) View response in a browser >>> # response.body 返回的所有內容 # response.xpath('//ul/li') 可以測試所有的xpath內容 More important, if you type response.selector you will access a selector object you can use toquery the response, and convenient shortcuts like response.xpath() and response.css() mapping toresponse.selector.xpath() and response.selector.css()
也就是可以很方便的,以交互的形式來查看xpath選擇是否正確。之前是用FireFox的F12來選擇的,但是并不能保證每次都能正確的選擇出內容。
也可使用:
scrapy shell 'http://scrapy.org' --nolog# 參數 --nolog 沒有日志
(2)示例
from scrapy import Spiderfrom scrapy_test.items import DmozItem class DmozSpider(Spider): name = 'dmoz' allowed_domains = ['dmoz.org'] start_urls = ['http://www.dmoz.org/Computers/Programming/Languages/Python/Books/', 'http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/,' ''] def parse(self, response): for sel in response.xpath('//ul/li'): item = DmozItem() item['title'] = sel.xpath('a/text()').extract() item['link'] = sel.xpath('a/@href').extract() item['desc'] = sel.xpath('text()').extract() yield item
(3)保存文件
可以使用,保存文件。格式可以 json,xml,csv
scrapy crawl -o 'a.json' -t 'json'
(4)使用模板創建spider
scrapy genspider baidu baidu.com # -*- coding: utf-8 -*-import scrapy class BaiduSpider(scrapy.Spider): name = "baidu" allowed_domains = ["baidu.com"] start_urls = ( 'http://www.baidu.com/', ) def parse(self, response): pass
這段先這樣吧,記得之前5個的,現在只能想起4個來了. :-(
千萬記得隨手點下保存按鈕。否則很是影響心情的(⊙o⊙)!
三、高級 -- scrapy.contrib.spiders.CrawlSpider
例子
#coding=utf-8from scrapy.contrib.spiders import CrawlSpider, Rulefrom scrapy.contrib.linkextractors import LinkExtractorimport scrapy class TestSpider(CrawlSpider): name = 'test' allowed_domains = ['example.com'] start_urls = ['http://www.example.com/'] rules = ( # 元組 Rule(LinkExtractor(allow=('category/.php', ), deny=('subsection/.php', ))), Rule(LinkExtractor(allow=('item/.php', )), callback='pars_item'), ) def parse_item(self, response): self.log('item page : %s' % response.url) item = scrapy.Item() item['id'] = response.xpath('//td[@id="item_id"]/text()').re('ID:(/d+)') item['name'] = response.xpath('//td[@id="item_name"]/text()').extract() item['description'] = response.xpath('//td[@id="item_description"]/text()').extract() return item
其他的還有 XMLFeedSpider
- class scrapy.contrib.spiders.XMLFeedSpider
- class scrapy.contrib.spiders.CSVFeedSpider
- class scrapy.contrib.spiders.SitemapSpider
四、選擇器
>>> from scrapy.selector import Selector >>> from scrapy.http import HtmlResponse
可以靈活的使用 .css() 和 .xpath() 來快速的選取目標數據
關于選擇器,需要好好研究一下。xpath() 和 css() ,還要繼續熟悉 正則.
當通過class來進行選擇的時候,盡量使用 css() 來選擇,然后再用 xpath() 來選擇元素的熟悉
五、Item Pipeline
Typical use for item pipelines are:
• cleansing HTML data # 清除HTML數據
• validating scraped data (checking that the items contain certain fields) # 驗證數據
• checking for duplicates (and dropping them) # 檢查重復
• storing the scraped item in a database # 存入數據庫
(1)驗證數據
from scrapy.exceptions import DropItem class PricePipeline(object): vat_factor = 1.5 def process_item(self, item, spider): if item['price']: if item['price_excludes_vat']: item['price'] *= self.vat_factor else: raise DropItem('Missing price in %s' % item)
(2)寫Json文件
import json class JsonWriterPipeline(object): def __init__(self): self.file = open('json.jl', 'wb') def process_item(self, item, spider): line = json.dumps(dict(item)) + '/n' self.file.write(line) return item
(3)檢查重復
from scrapy.exceptions import DropItem class Duplicates(object): def __init__(self): self.ids_seen = set() def process_item(self, item, spider): if item['id'] in self.ids_seen: raise DropItem('Duplicate item found : %s' % item) else: self.ids_seen.add(item['id']) return item
至于將數據寫入數據庫,應該也很簡單。在 process_item 函數中,將 item 存入進去即可了。