国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Java > 正文

Java中常用的6種排序算法詳細分解

2019-11-26 15:28:21
字體:
來源:轉載
供稿:網友

排序算法很多地方都會用到,近期又重新看了一遍算法,并自己簡單地實現了一遍,特此記錄下來,為以后復習留點材料。

廢話不多說,下面逐一看看經典的排序算法:

1. 選擇排序

選擇排序的基本思想是遍歷數組的過程中,以 i 代表當前需要排序的序號,則需要在剩余的 [i…n-1] 中找出其中的最小值,然后將找到的最小值與 i 指向的值進行交換。因為每一趟確定元素的過程中都會有一個選擇最大值的子流程,所以人們形象地稱之為選擇排序。舉個實例來看看:

初始: [38, 17, 16, 16, 7, 31, 39, 32, 2, 11] 
 
i = 0:  [2 , 17, 16, 16, 7, 31, 39, 32, 38 , 11] (0th [38]<->8th [2]) 
 
i = 1:  [2, 7 , 16, 16, 17 , 31, 39, 32, 38, 11] (1st [38]<->4th [17]) 
 
i = 2:  [2, 7, 11 , 16, 17, 31, 39, 32, 38, 16 ] (2nd [11]<->9th [16]) 
 
i = 3:  [2, 7, 11, 16, 17, 31, 39, 32, 38, 16] ( 無需交換 ) 
 
i = 4:  [2, 7, 11, 16, 16 , 31, 39, 32, 38, 17 ] (4th [17]<->9th [16]) 
 
i = 5:  [2, 7, 11, 16, 16, 17 , 39, 32, 38, 31 ] (5th [31]<->9th [17]) 
 
i = 6:  [2, 7, 11, 16, 16, 17, 31 , 32, 38, 39 ] (6th [39]<->9th [31]) 
 
i = 7:  [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 無需交換 ) 
 
i = 8:  [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 無需交換 ) 
 
i = 9:  [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 無需交換 )

由例子可以看出,選擇排序隨著排序的進行( i 逐漸增大),比較的次數會越來越少,但是不論數組初始是否有序,選擇排序都會從 i 至數組末尾進行一次選擇比較,所以給定長度的數組,選擇排序的比較次數是固定的: 1 + 2 + 3 + …. + n = n * (n + 1) / 2 ,而交換的次數則跟初始數組的順序有關,如果初始數組順序為隨機,則在最壞情況下,數組元素將會交換 n 次,最好的情況下則可能 0 次(數組本身即為有序)。

由此可以推出,選擇排序的時間復雜度和空間復雜度分別為 O(n2 ) 和 O(1) (選擇排序只需要一個額外空間用于數組元素交換)。

實現代碼:

復制代碼 代碼如下:

/** 
* Selection Sorting 
*/
SELECTION(new Sortable() { 
    public <T extends Comparable<T>> void sort(T[] array, boolean ascend) { 
        int len = array.length; 
        for (int i = 0; i < len; i++) { 
            int selected = i; 
            for (int j = i + 1; j < len; j++) { 
                int compare = array[j].compareTo(array[selected]); 
                if (compare != 0 && compare < 0 == ascend) { 
                    selected = j; 
                } 
            } 
 
            exchange(array, i, selected); 
        } 
    } 
})

2. 插入排序

插入排序的基本思想是在遍歷數組的過程中,假設在序號 i 之前的元素即 [0..i-1] 都已經排好序,本趟需要找到 i 對應的元素 x 的正確位置 k ,并且在尋找這個位置 k 的過程中逐個將比較過的元素往后移一位,為元素 x “騰位置”,最后將 k 對應的元素值賦為 x ,插入排序也是根據排序的特性來命名的。

以下是一個實例,紅色 標記的數字為插入的數字,被劃掉的數字是未參與此次排序的元素,紅色 標記的數字與被劃掉數字之間的元素為逐個向后移動的元素,比如第二趟參與排序的元素為 [11, 31, 12] ,需要插入的元素為 12 ,但是 12 當前并沒有處于正確的位置,于是我們需要依次與前面的元素 31 、 11 做比較,一邊比較一邊移動比較過的元素,直到找到第一個比 12 小的元素 11 時停止比較,此時 31 對應的索引 1 則是 12 需要插入的位置。

初始:    [11, 31, 12, 5, 34, 30, 26, 38, 36, 18] 
 
第一趟: [11, 31 , 12, 5, 34, 30, 26, 38, 36, 18] (無移動的元素) 
 
第二趟: [11, 12 , 31, 5, 34, 30, 26, 38, 36, 18] ( 31 向后移動) 
 
第三趟: [5 , 11, 12, 31, 34, 30, 26, 38, 36, 18] ( 11, 12, 31 皆向后移動) 
 
第四趟: [5, 11, 12, 31, 34 , 30, 26, 38, 36, 18] (無移動的元素) 
 
第五趟: [5, 11, 12, 30 , 31, 34, 26, 38, 36, 18] ( 31, 34 向后移動) 
 
第六趟: [5, 11, 12, 26 , 30, 31, 34, 38, 36, 18] ( 30, 31, 34 向后移動) 
 
第七趟: [5, 11, 12, 26, 30, 31, 34, 38 , 36, 18] (無移動的元素) 
 
第八趟: [5, 11, 12, 26, 30, 31, 34, 36 , 38, 18] ( 38 向后移動) 
 
第九趟: [5, 11, 12, 18 , 26, 30, 31, 34, 36, 38] ( 26, 30, 31, 34, 36, 38 向后移動)

插入排序會優于選擇排序,理由是它在排序過程中能夠利用前部分數組元素已經排好序的一個優勢,有效地減少一些比較的次數,當然這種優勢得看數組的初始順序如何,最壞的情況下(給定的數組恰好為倒序)插入排序需要比較和移動的次數將會等于 1 + 2 + 3… + n = n * (n + 1) / 2 ,這種極端情況下,插入排序的效率甚至比選擇排序更差。因此插入排序是一個不穩定的排序方法,插入效率與數組初始順序息息相關。一般情況下,插入排序的時間復雜度和空間復雜度分別為 O(n2 ) 和 O(1) 。

實現代碼:

復制代碼 代碼如下:

/** 
* Insertion Sorting 
*/
INSERTION(new Sortable() { 
    public <T extends Comparable<T>> void sort(T[] array, boolean ascend) { 
        int len = array.length; 
        for (int i = 1; i < len; i++) { 
            T toInsert = array[i]; 
            int j = i; 
            for (; j > 0; j 主站蜘蛛池模板: 嫩江县| 名山县| 泽普县| 桂东县| 易门县| 河北区| 婺源县| 唐河县| 庆云县| 社会| 尖扎县| 纳雍县| 苍山县| 丰原市| 砚山县| 梁山县| 青川县| 顺昌县| 栾川县| 郴州市| 莎车县| 教育| 井陉县| 陵水| 江华| 庄浪县| 平乐县| 乐昌市| 罗江县| 广汉市| 抚顺市| 高密市| 关岭| 崇仁县| 通道| 托克托县| 淮阳县| 泽普县| 丹棱县| 丰顺县| 太白县|