国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

poj1692 Crossed Matchings(dp,最長公共子序列變形,好題)

2019-11-14 12:26:51
字體:
來源:轉載
供稿:網友

Crossed Matchings
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 2838 Accepted: 1840

Description

There are two rows of positive integer numbers. We can draw one line segment between any two equal numbers, with values r, if one of them is located in the first row and the other one is located in the second row. We call this line segment an r-matching segment. The following figure shows a 3-matching and a 2-matching segment. 
We want to find the maximum number of matching segments possible to draw for the given input, such that: 1. Each a-matching segment should cross exactly one b-matching segment, where a != b . 2. No two matching segments can be drawn from a number. For example, the following matchings are not allowed. 
Write a PRogram to compute the maximum number of matching segments for the input data. Note that this number is always even.

Input

The first line of the input is the number M, which is the number of test cases (1 <= M <= 10). Each test case has three lines. The first line contains N1 and N2, the number of integers on the first and the second row respectively. The next line contains N1 integers which are the numbers on the first row. The third line contains N2 integers which are the numbers on the second row. All numbers are positive integers less than 100.

Output

Output should have one separate line for each test case. The maximum number of matching segments for each test case should be written in one separate line.

Sample Input

36 61 3 1 3 1 33 1 3 1 3 14 41 1 3 3 1 1 3 3 12 111 2 3 3 2 4 1 5 1 3 5 103 1 2 3 2 4 12 1 5 5 3 

Sample Output

608

Source

Tehran 1999

參考博客鏈接

題意:

給出兩行數,求上下匹配的最多組數是多少。匹配規則1.匹配對的數字必須相同2.每個匹配必須有且只能有一個匹配與之相交叉,且相交叉的兩組匹配數字必須不同3.一個數最多只能匹配一次

題解:

一開始我以為是個二分匹配的題目,后來想了好久不知道怎么處理第二個條件。

這題其實是動態規劃題。分析:用dp[i][j]表示第一行取i個數,第二行取j個數字的最多匹配項對于某個dp[i][j]:1.不匹配第一行i個,或不匹配第二行第j個:dp[i][j]=Max(dp[i-1][j],dp[i][j-1])2.如果a[i]==b[j],不產生新匹配,匹配結果為1的值3.若a[i]!=b[j]:a.則第一行從i往前掃,直到掃到第一個a[k1]==b[j](k1 b.同理,第二行從j往前掃,直到掃到第一個b[k2]==a[i](k2 若找不到這樣的k1,k2則不能才產生新匹配,跳過若存在這樣的k1,k2,此時匹配(a[i],b[k2])、(a[k1],b[j])匹配,才生新的匹配情形,匹配數量為:dp[k1-1][k2-1]+2。

#include<iostream>#include<cstdio>#include<algorithm>#include<cstring>#include<vector>#include<queue>#include<stack>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back#define fi first#define se secondtypedef vector<int> VI;typedef long long ll;typedef pair<int,int> PII;const int inf=0x3fffffff;const ll mod=1000000007;const int maxn=100+10;int n,m;int a[maxn],b[maxn];int d[maxn][maxn];int main(){    int cas;    scanf("%d",&cas);    while(cas--)    {        scanf("%d%d",&n,&m);        rep(i,1,n+1) scanf("%d",&a[i]);        rep(i,1,m+1) scanf("%d",&b[i]);        memset(d,0,sizeof(d));        rep(i,2,n+1) rep(j,2,m+1)        {            d[i][j]=max(d[i][j-1],d[i-1][j]);            if(a[i]==b[j]) continue;            else            {                int p1=0,p2=0;                for(int k=i-1;k>0;k--)                {                    if(a[k]==b[j])                    {                        p1=k;                        break;                    }                }                for(int l=j-1;l>0;l--)                {                    if(b[l]==a[i])                    {                        p2=l;                        break;                    }                }                if(p1&&p2) d[i][j]=max(d[i][j],d[p1-1][p2-1]+2);            }        }        printf("%d/n",d[n][m]);    }        return 0;}


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 孝昌县| 许昌市| 西贡区| 中方县| 云安县| 揭西县| 和平县| 迁安市| 九寨沟县| 凌源市| 崇文区| 广东省| 沙湾县| 阳城县| 日照市| 博湖县| 南和县| 连城县| 武隆县| 工布江达县| 罗定市| 苏尼特左旗| 嘉兴市| 崇信县| 富平县| 福建省| 恭城| 息烽县| 东明县| 隆子县| 平顶山市| 泽州县| 玛沁县| 乌拉特后旗| 宾阳县| 马鞍山市| 会宁县| 巩义市| 甘谷县| 新巴尔虎左旗| 闽侯县|