国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

Codeforces Round #341 (Div. 2)E(矩陣快速冪優化dp,好題)

2019-11-14 10:15:53
字體:
來源:轉載
供稿:網友

題目鏈接E. Wet Shark and Blockstime limit per test2 secondsmemory limit per test256 megabytesinputstandard inputoutputstandard output

There are b blocks of digits. Each one consisting of the same n digits, which are given to you in the input. Wet Shark must choose exactly one digit from each block and concatenate all of those digits together to form one large integer. For example, if he chooses digit 1 from the first block and digit 2 from the second block, he gets the integer 12. 

Wet Shark then takes this number modulo x. Please, tell him how many ways he can choose one digit from each block so that he gets exactly k as the final result. As this number may be too large, PRint it modulo 109?+?7.

Note, that the number of ways to choose some digit in the block is equal to the number of it's occurrences. For example, there are 3 ways to choose digit 5 from block 3 5 6 7 8 9 5 1 1 1 1 5.

Input

The first line of the input contains four space-separated integers, nbk and x (2?≤?n?≤?50?000,?1?≤?b?≤?109,?0?≤?k?<?x?≤?100,?x?≥?2) — the number of digits in one block, the number of blocks, interesting remainder modulo x and modulo x itself.

The next line contains n space separated integers ai (1?≤?ai?≤?9), that give the digits contained in each block.

Output

Print the number of ways to pick exactly one digit from each blocks, such that the resulting integer equals k modulo x.

Examplesinput
12 1 5 103 5 6 7 8 9 5 1 1 1 1 5output
3input
3 2 1 26 2 2output
0input
3 2 1 23 1 2output
6Note

In the second sample possible integers are 22, 26, 62 and 66. None of them gives the remainder 1 modulo 2.

In the third sample integers 11, 13, 21, 23, 31 and 33 have remainder 1 modulo 2. There is exactly one way to obtain each of these integers, so the total answer is 6.

題意:

給你n個數,這n個數的大小都在1~9之間,有b塊集合,每個集合內都有這n個數,你要從每個集合中取出一個數,并把它們依次拼接起來合并成一個大的整數,問最后這個整數%x得到k的方案數有多少。

題解:

我們可以先把1~9在n出現的次數用occ[i]存下來 ,然后用dp[i][j]表示取前i個數,最終模x后為j的方案數,那么容易得到dp[0][0]=1,dp[i][j]=sum{dp[i-1][a]*occ[d] }(其中(a*10+d)%x==j),但因為b太大,所以我們考慮用矩陣快速冪優化.

由于對于指定的膜數x,我們可以遍歷每個余數i和j,再遍歷k(k為1-9的數),如果(i*10+k)%x==j,那么矩陣data[i][j]+=occ[k].

然后對構造的這個矩陣進行快速冪運算即可。

#include<iostream>#include<cstdio>#include<algorithm>#include<cstring>#include<vector>#include<queue>#include<stack>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back#define fi first#define se secondtypedef vector<int> VI;typedef long long ll;typedef pair<int,int> PII;const int inf=0x3fffffff;const ll mod=1000000007;const int maxn=100+10;struct matrix{    int n;    ll data[maxn][maxn];    matrix(int tn=0){        n=tn;        rep(i,0,n) rep(j,0,n) data[i][j]=0;    }    void init(){        rep(i,0,n) data[i][i]=1;    }};matrix Operator *(matrix a,matrix b){    matrix c(a.n);    int n=a.n;    rep(i,0,n) rep(j,0,n) rep(k,0,n) c.data[i][j]=(c.data[i][j]+a.data[i][k]*b.data[k][j]%mod)%mod;    return c;}matrix func(matrix a,int b){    matrix t(a.n),ans(a.n);    ans.init();    t=a;    while(b)    {        if(b&1) ans=ans*t;        t=t*t;        b>>=1;    }    return ans;}int a[15];int main(){    int n,b,kk,x;    scanf("%d%d%d%d",&n,&b,&kk,&x);    rep(i,1,n+1)    {        int p;        scanf("%d",&p);        a[p]++;    }    matrix tmp(x);    rep(i,0,x)        rep(j,0,x)            rep(k,1,10)            if((i*10+k)%x==j) tmp.data[i][j]+=a[k]; //    matrix ans(x);    ans=func(tmp,b);    cout << ans.data[0][kk] << endl;    return 0;}


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 朝阳县| 闻喜县| 灵寿县| 望江县| 洛阳市| 桐柏县| 万州区| 灵台县| 延津县| 额济纳旗| 无为县| 巨鹿县| 威信县| 彭州市| 潮安县| 师宗县| 红河县| 南部县| 吉安市| 芜湖县| 仪陇县| 沁阳市| 全椒县| 深水埗区| 合川市| 壶关县| 彭水| 上饶市| 弥渡县| 阳泉市| 项城市| 方山县| 武陟县| 揭东县| 凭祥市| 嘉荫县| 额尔古纳市| 河津市| 济阳县| 临高县| 津南区|