国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 學(xué)院 > 開發(fā)設(shè)計(jì) > 正文

poj2528 Mayor's posters

2019-11-11 02:45:34
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

Mayor's posters
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 61616 Accepted: 17812

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules: Every candidate can place exactly one poster on the wall. All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown). The wall is divided into segments and the width of each segment is one byte. Each poster must completely cover a contiguous number of wall segments.They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set PRint the number of visible posters after all the posters are placed. The picture below illustrates the case of the sample input. 

Sample Input

151 42 68 103 47 10

Sample Output

4大意:有一面長(zhǎng)度1e7的墻,然后告訴你張貼的海報(bào)的順序以及覆蓋的位置。讓你計(jì)算最后能看到的最多的海報(bào)數(shù)。

用線段樹處理,剛接觸這東西,還不是很懂,然后需要離散化,因?yàn)樽疃?0000個(gè)區(qū)間,20000個(gè)點(diǎn),你不可能直接開1e7這么大的空間。

不知道為什么要開8倍空間。

按理說(shuō)兩倍空間應(yīng)該夠了,只能說(shuō)是數(shù)據(jù)了吧。

作為線段樹的題應(yīng)該說(shuō)并不是很難,重點(diǎn)是離散化。

注意!!!離散化的時(shí)候,如果區(qū)間不相鄰的那么在編號(hào)的時(shí)候不要編成相鄰的。這個(gè)poj數(shù)據(jù)水,根本沒(méi)考慮過(guò)這樣的數(shù)據(jù)!!。

張貼海報(bào),就是區(qū)間更新,我們從最后一張張貼的海報(bào)開始。

附上幾組數(shù)據(jù):

531 101 36 1062 92 1714 1521 2315 1826 2635 64 56 831 101 36 1051 42 68 103 47 10正確答案自然是3 5 2 3 4.自己畫圖看看就知道了。

附上正確的代碼:

//#include <bits/stdc++.h>#include <iostream>#include <cstdio>#include <algorithm>using namespace std;const int MAXN=1e4+7;int n,m;int postl[MAXN],postr[MAXN];struct node{    int l,r;    bool iscover;}tree[MAXN<<4];int ha[10000005];int p[MAXN<<1];void build_tree(int i,int l,int r){    tree[i].l=l;    tree[i].r=r;    tree[i].iscover=0;    if(l==r)return;    int mid=(l+r)>>1;    build_tree(i<<1,l,mid);    build_tree(i<<1|1,mid+1,r);}bool post(int i,int l,int r)//貼上一張海報(bào){    if(tree[i].iscover)return 0;//如果大區(qū)間已經(jīng)被覆蓋    if(tree[i].l==l&&tree[i].r==r)//如果沒(méi)被覆蓋過(guò)    {        tree[i].iscover=1;        return 1;    }    int mid=(tree[i].l+tree[i].r)>>1;    bool ans;    if(r<=mid)ans=post(i<<1,l,r);    else if(l>mid)ans=post(i<<1|1,l,r);    else    {        int p1=post(i<<1,l,mid);        int p2=post(i<<1|1,mid+1,r);        ans=p1||p2;    }    //向上更新    if(tree[i<<1].iscover&&tree[i<<1|1].iscover)tree[i].iscover=1;    return ans;}int main(){    int t;    int cnt;    scanf("%d",&t);    while(t--)    {        cnt=0;        scanf("%d",&n);        for(int i=0;i<n;++i)        {            scanf("%d%d",&postl[i],&postr[i]);            p[cnt++]=postl[i];            p[cnt++]=postr[i];        }        sort(p,p+cnt);        cnt=unique(p,p+cnt)-p;        int pos=0;        ha[p[0]]=0;        for(int i=1;i<cnt;++i)        {            if(p[i]-p[i-1]==1)ha[p[i]]=++pos;            else            {                pos+=2;                ha[p[i]]=pos;            }        }        build_tree(1,0,pos);        int ans=0;        for(int i=n-1;i>=0;--i)        {            if(post(1,ha[postl[i]],ha[postr[i]]))ans++;        }        printf("%d/n",ans);    }    return 0;}


發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 鄂托克前旗| 陵川县| 宜宾县| 确山县| 武平县| 无棣县| 洛宁县| 大安市| 南和县| 茂名市| 霍州市| 广饶县| 游戏| 万盛区| 滦平县| 开阳县| 台中县| 武义县| 蒙阴县| 丰顺县| 兴国县| 郓城县| 柳州市| 九寨沟县| 大埔区| 华阴市| 滨海县| 刚察县| 武胜县| 巢湖市| 合水县| 团风县| 教育| 大同县| 邵阳县| 彰化市| 新丰县| 海丰县| 大同市| 禄丰县| 泸州市|