国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

P03: 多重背包問題

2019-11-10 18:20:56
字體:
來源:轉載
供稿:網友

題目

有N種物品和一個容量為V的背包。第i種物品最多有n[i]件可用,每件費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

基本算法

這題目和完全背包問題很類似。基本的方程只需將完全背包問題的方程略微一改即可,因為對于第i種物品有n[i]+1種策略:取0件,取1件……取n[i]件。令f[i][v]表示前i種物品恰放入一個容量為v的背包的最大權值,則有狀態轉移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

復雜度是O(V*Σn[i])。

轉化為01背包問題

另一種好想好寫的基本方法是轉化為01背包求解:把第i種物品換成n[i]件01背包中的物品,則得到了物品數為Σn[i]的01背包問題,直接求解,復雜度仍然是O(V*Σn[i])。

但是我們期望將它轉化為01背包問題之后能夠像完全背包一樣降低復雜度。仍然考慮二進制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價于取若干件代換以后的物品。另外,取超過n[i]件的策略必不能出現。

方法是:將第i種物品分成若干件物品,其中每件物品有一個系數,這件物品的費用和價值均是原來的費用和價值乘以這個系數。使這些系數分別為1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數。例如,如果n[i]為13,就將這種物品分成系數分別為1,2,4,6的四件物品。

分成的這幾件物品的系數和為n[i],表明不可能取多于n[i]件的第i種物品。另外這種方法也能保證對于0..n[i]間的每一個整數,均可以用若干個系數的和表示,這個證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,并不難,希望你自己思考嘗試一下。

這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉化為了復雜度為<math>O(V*Σlog n[i])的01背包問題,是很大的改進。

下面給出O(log amount)時間處理一件多重背包中物品的過程,其中amount表示物品的數量:

PRocedure MultiplePack(cost,weight,amount)    if cost*amount>=V        CompletePack(cost,weight)        return    integer k=1    while k<amount        ZeroOnePack(k*cost,k*weight)        amount=amount-k        k=k*2    ZeroOnePack(amount*cost,amount*weight)

希望你仔細體會這個偽代碼,如果不太理解的話,不妨翻譯成程序代碼以后,單步執行幾次,或者頭腦加紙筆模擬一下,也許就會慢慢理解了。

O(VN)的算法

多重背包問題同樣有O(VN)的算法。這個算法基于基本算法的狀態轉移方程,但應用單調隊列的方法使每個狀態的值可以以均攤O(1)的時間求解。由于用單調隊列優化的DP已超出了NOIP的范圍,故本文不再展開講解。我最初了解到這個方法是在樓天成的“男人八題”幻燈片上。

小結

這里我們看到了將一個算法的復雜度由O(V*Σn[i])改進到O(V*Σlog n[i])的過程,還知道了存在應用超出NOIP范圍的知識的O(VN)算法。希望你特別注意“拆分物品”的思想和方法,自己證明一下它的正確性,并將完整的程序代碼寫出來。


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 章丘市| 黑山县| 郎溪县| 汝州市| 兴山县| 兴文县| 宁城县| 堆龙德庆县| 额敏县| 龙海市| 大冶市| 剑阁县| 措美县| 天祝| 新闻| 龙胜| 乐亭县| 茂名市| 铜鼓县| 宝兴县| 呼和浩特市| 平罗县| 恩平市| 定结县| 高平市| 苍梧县| 五台县| 昂仁县| 富宁县| 专栏| 渭源县| 柳河县| 隆安县| 张家界市| 南皮县| 洪泽县| 唐海县| 岳阳县| 铁岭市| 龙海市| 呼和浩特市|