上一篇文章介紹最小二乘法,本文介紹g2o實(shí)現(xiàn)最小二乘法。 g2o即General Graph Optimization,它是一個(gè)基于圖優(yōu)化的庫(kù)。至于圖優(yōu)化理論,參照半閑居士的博客 接著上回曲線擬合問(wèn)題,擬合
由于g2o中沒(méi)有本例類型頂點(diǎn)和邊,因此首先需要自己定義
// 曲線模型的頂點(diǎn),模板參數(shù):優(yōu)化變量維度和數(shù)據(jù)類型class CurveFittingVertex: public g2o::BaseVertex<4, Vector4d>{public: EIGEN_MAKE_ALIGNED_OperaTOR_NEW CurveFittingVertex(); virtual void setToOriginImpl() // 重置 { _estimate << 0, 0, 0, 0; } virtual void oplusImpl(const double* update_);// 更新 //輸入輸出可以不定義 bool read(std::istream& is) {} bool write(std::ostream& os) const {}};// 頂點(diǎn)構(gòu)造函數(shù)CurveFittingVertex::CurveFittingVertex() : BaseVertex<4, Eigen::Vector4d>() { }// 頂點(diǎn)更新函數(shù)void CurveFittingVertex::oplusImpl(const double* update_) { Eigen::Map<const Vector4d> up(update_); _estimate += up;}頂點(diǎn)的定義主要需要定義_estimate的更新函數(shù)oplusImpl和setToOriginImpl。
誤差函數(shù)
然后是圖的構(gòu)造和求解了
#include <iostream>#include <g2o/core/base_vertex.h>#include <g2o/core/base_unary_edge.h>#include <g2o/core/block_solver.h>#include <g2o/core/optimization_algorithm_levenberg.h>#include <g2o/core/optimization_algorithm_gauss_newton.h>#include <g2o/core/optimization_algorithm_dogleg.h>#include <g2o/solvers/dense/linear_solver_dense.h>#include <Eigen/Core>#include <Eigen/Dense>#include <opencv2/core/core.hpp>#include <cmath>#include <chrono>using namespace std;using namespace Eigen;int main(){ double a = 5.0, b = 1.0, c = 10.0, d = 2.0; // 真實(shí)參數(shù)值 int N = 100; double w_sigma = 2.0; // 噪聲值Sigma cv::RNG rng; // 隨機(jī)數(shù)產(chǎn)生器OpenCV double abcd[4] = {0, 0, 0, 0}; // 參數(shù)的估計(jì)值abc vector<double> x_data, y_data; cout << "generate random data" << endl; for(int i = 0; i < N; i++) { //generate a random variable [-10 10] double x = rng.uniform(-10., 10.); double y = a * sin(b*x) + c * cos(d *x) + rng.gaussian(w_sigma); x_data.push_back(x); y_data.push_back(y); cout << x_data[i] << " , " << y_data[i] << endl; } // 構(gòu)建圖優(yōu)化,先設(shè)定g2o // 矩陣塊:每個(gè)誤差項(xiàng)優(yōu)化變量維度為4 ,誤差值維度為1 typedef g2o::BlockSolver< g2o::BlockSolverTraits<4, 1> > Block; // 線性方程求解器:稠密的增量方程 Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); Block* solver_ptr = new Block(linearSolver); // 矩陣塊求解器 // 梯度下降方法,從GN, LM, DogLeg 中選 g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr ); // g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr ); // g2o::OptimizationAlgorithmDogleg* solver = new g2o::OptimizationAlgorithmDogleg( solver_ptr ); g2o::SparSEOptimizer optimizer; // 圖模型 optimizer.setAlgorithm( solver ); // 設(shè)置求解器 optimizer.setVerbose(true); // 打開調(diào)試輸出 // 往圖中增加頂點(diǎn) CurveFittingVertex *v = new CurveFittingVertex(); // 設(shè)置優(yōu)化初始估計(jì)值 v->setEstimate( Eigen::Vector4d(1.6, 1.4, 6.2, 1.7)); v->setId(0); v->setFixed(false); optimizer.addVertex(v); // 往圖中增加邊 for(int i = 0; i < N; i++) { CurveFittingEdge* edge = new CurveFittingEdge(); edge->setId(i+1); edge->setVertex(0, v); // 設(shè)置連接的頂點(diǎn) edge->setMeasurement( y_data[i] ); // 觀測(cè)數(shù)值 // 信息矩陣:協(xié)方差矩陣之逆 edge->setInformation( Eigen::Matrix<double, 1, 1>::Identity() * 1 /(w_sigma* w_sigma) ); edge->_x = x_data[i]; optimizer.addEdge( edge ); } // 執(zhí)行優(yōu)化 cout << "strat optimization" << endl; chrono::steady_clock::time_point t1 = chrono::steady_clock::now(); optimizer.initializeOptimization(); optimizer.optimize(100); chrono::steady_clock::time_point t2 = chrono::steady_clock::now(); chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double> > (t2 - t1); cout << "solve time cost = " << time_used.count() << " seconds." << endl; // 輸出優(yōu)化值 Eigen::Vector4d abcd_estimate = v->estimate(); cout << "estimated module: " << endl << abcd_estimate << endl; return 0;}另外g2o中設(shè)置核函數(shù)、邊緣化等等后續(xù)再更新。
引用: [1] 《g2o: A General Framework for Graph Optimization》 [2] 《slambook by gaoxiang》
新聞熱點(diǎn)
疑難解答
圖片精選
網(wǎng)友關(guān)注