Popular Cows
Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.Input * Line 1: Two space-separated integers, N and M * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.Output * Line 1: A single integer that is the number of cows who are considered popular by every other cow.Sample Input 3 31 22 12 3 |
運用強連通分量將圖變成DAG圖,并知道了最后一個分量可能為拓撲終點,dfs反邊搜索看是否達到所有邊。
代碼:
#include<cstdio>#include<vector>#include<cstring>#include<algorithm>using namespace std;int n,m,cmp[10100];vector<int> V[10100],FV[10100],vs;bool used[10100];void add_edge(int a,int b){ V[a].push_back(b); FV[b].push_back(a);}void dfs(int v){ used[v]=true; for (int i=0;i<V[v].size();i++) { if (!used[V[v][i]]) dfs(V[v][i]); } vs.push_back(v);}void rdfs(int v,int k){ used[v]=true; cmp[v]=k; for (int i=0;i<FV[v].size();i++) { if (!used[FV[v][i]]) rdfs(FV[v][i],k); }}int main(){ scanf("%d%d",&n,&m); // while (~scanf("%d%d",&n,&m)) // { int a,b; // for (int i=1;i<=n;i++) // { // V[i].clear(); // FV[i].clear(); // } vs.clear(); for (int i=0;i<m;i++) { scanf("%d%d",&a,&b); add_edge(a,b); } memset(used,0,sizeof(used)); for (int i=1;i<=n;i++) { if(!used[i]) dfs(i); } memset(used,0,sizeof(used)); int k=1; for (int i=vs.size()-1;i>=0;i--) { if(!used[vs[i]]) rdfs(vs[i],k++); } int ans=0; for (int i=1;i<=n;i++) { if (cmp[i]==k-1) { m=i; ans++; } } memset(used,0,sizeof(used)); rdfs(m,0); for (int i=1;i<=n;i++) { if (!used[i]) { ans=0; break; } } PRintf("%d/n",ans); //} return 0;}
新聞熱點
疑難解答